• Title/Summary/Keyword: evolution: Galaxy

Search Result 457, Processing Time 0.022 seconds

The evolution of a late-type galaxy through multiple high-speed galaxy-galaxy collisions

  • Hwang, Jeong-Sun;Park, Changbom
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.51.4-52
    • /
    • 2017
  • We perform hydrodynamical simulations of a late-type galaxy experiencing frequent high-speed encounters with intruding galaxies, called "galaxy harassment". Specifically, we simulate a Milky Way-like galaxy colliding consecutively with six twice-massive early-type galaxies containing hot diffuse gas on their halos, with various impact parameters ranging from 65 kpc/h to 15 kpc/h at the relative speed of about 1500 km/s. We show that galaxy-galaxy encounters play a significant role in a cluster environment in gas stripping and star formation quenching through hydrodynamic interactions of late-type galaxies with cluster early-type galaxies.

  • PDF

WITNESSING DISSOLUTION OF A STAR CLUSTER IN THE SEXTANS DWARF GALAXY

  • Kim, Hak-Sub;Han, Sang-Il;Joo, Seok-Joo;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.32.3-32.3
    • /
    • 2018
  • We report a possible discovery of a relic of a dissolved star cluster in the Sextans dwarf spheroidal galaxy. Using the hk index (${\equiv}$(Ca-b)-(b-y)) as a photometric metallicity indicator, we have successfully discriminated the metal-poor and metal-rich stars in the galaxy and found an unexpected number density peak of metal-poor stars near the galaxy center. The analysis of color-magnitude diagrams reveals that they appear to be originated from an old, metal-poor globular cluster which might be slightly farther than the bulk of field stars in the galaxy. This supports the presence of the star cluster remnants in the galaxy which have been suggested by previous studies. If confirmed, dissolution of a star cluster provides a piece of evidence of a cored dark-matter halo profile for the Sextans dwarf galaxy.

  • PDF

New candidates of 1 < z < 2 galaxy clusters in 13.6 $deg^2$ of ELAIS-N1/N2 fields with a new colour-colour selection technique

  • Hyun, Minhee;Im, Myungshin;Kim, Jae-Woo;Lee, Seong-Kook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.50.2-50.2
    • /
    • 2013
  • Galaxy clusters, the largest gravitationally bound systems, are an important means to place constraints on cosmological models. Moreover, they are excellent places to test galaxy evolution models in connection to the environments. To this day, massive clusters have been found unexpectedly at high redshfit (Kang & Im 2009, Durret et al. 2011, Tashikawa et al. 2012), and evolution of galaxies in cluster has not been fully understood. Finding galaxy cluster candidates at z > 1 in wide, deep imaging survey data will enable us to solve such issues of modern extragalactic astronomy. We report new candidates of galaxy clusters in the wide and deep survey fields, European Large Area ISO Survey North1(ELAIS-N1) and North2(ELAIS-N2) fields, covering sky area of $8.75deg^2$ and $4.85deg^2$ each. We also suggest a new useful colour-colour selection technique to separate 1 < z < 2 galaxies from low-z galaxies by combining multi-wavelength data from the UKIRT Infrared Deep Sky Survey Deep Extragalactic Survey (UKIDSS DXS, JK bands), Spitzer Wise-area InfraRed Extragalactic survey (SWIRE, Optical-Infrared bands), Canada France Hawaii Telescope (CFHT, z band) and Infrared Medium-deep Survey(IMS, J band).

  • PDF

Galaxy Clusters in ELAIS-N1 field

  • Hyun, Minhee;Im, Myungshin;Kim, Jae-Woo;Lee, Seong-Kook;Edge, Alastair C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.70.2-70.2
    • /
    • 2014
  • Galaxy clusters, the largest gravitationally bound systems, are an important means to place constraints on cosmological models. Moreover, they are excellent places to test galaxy evolution models in connection to the environments. To this day, massive clusters have been found unexpectedly(Kang & Im 2009, Durret et al. 2011, Tashikawa et al. 2012) and evolution of galaxies in cluster have been still controversial (Elbaz et al. 2007, Cooper et al. 2008, Tran et al. 2009). Finding galaxy cluster candidates in a wide, deep imaging survey data will enable us to solve the such issues of modern extragalactic astronomy. We have used multi-wavelength data from the UKIRT Infrared Deep Sky Survey Deep Extragalactic Survey (UKIDSS DXS/J and K bands), Spitzer Wise-area InfraRed Extragalactic survey (SWIRE/two mid-infrared bands), the Panoramic Survey Telescope and Rapid Response System (PAN-STARRS/ g, r, i, z, y bands) and Infrared Medium-deep Survey(IMS/J band). We report new candidates of galaxy clusters and properties of their member galaxies in one of the wide and deep survey fields ELAIS-N1, European Large Area ISO Survey North1, covering sky area of $8.75deg^2$.

  • PDF

A Mid-infrared View on the Fast Galaxy Evolution in Compact Groups

  • Lee, Gwang-Ho;Hwang, Ho Seong;Sohn, Jubee;Lee, Myung Gyoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.34.2-34.2
    • /
    • 2016
  • We study the mid-infrared (MIR) properties of galaxies in compact groups and their environmental dependence using the Wide-field Infrared Survey Explorer data. We use a sample of 670 compact groups and their 2175 member galaxies with $M_r$ < -19 and 0.01 < z < 0.0741 from Sohn et al. (2016), which were identified through a friends-of-friends algorithm. We find that the MIR [3.4]-[12] colors of early-type galaxies in compact groups are on average bluer than those of early-type galaxies in clusters. Furthermore, we find that when compact groups have both early- and late-type member galaxies, the MIR colors of the late-type galaxies in those compact groups can be bluer than those of late-type galaxies in clusters. We also find that as background galaxy number densities of compact groups increase, compact group galaxies have higher early-type galaxy fractions and bluer MIR colors. These trends are also seen for background galaxies. However, at a given background density, compact group galaxies always have higher early-type galaxy fractions and bluer MIR colors than the background galaxies. Our findings suggest that the properties of compact group galaxies depend on both internal and external environments of the compact groups, and that galaxy evolution is faster in compact groups than in clusters.

  • PDF

High redshift galaxy clusters in ELAIS-N1/N2 fields with a new color selection technique

  • Hyun, Minhee;Im, Myungshin;Kim, Jae-Woo;Lee, Seong-Kook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.48.1-48.1
    • /
    • 2014
  • Galaxy clusters, the largest gravitationally bound systems, are an important means to place constraints on cosmological models. Moreover, they are excellent places to test galaxy evolution models in connection to the environments. To this day, massive clusters have been found unexpectedly(Kang & Im 2009, Durret et al. 2011, Tashikawa et al. 2012) and evolution of galaxies in cluster have been still controversial (Elbaz et al. 2007, Cooper et al. 2008, Tran et al. 2009). Finding galaxy cluster candidates at z>1 in a wide, deep imaging survey data will enable us to solve the such issues of modern extragalactic astronomy. We report new candidates of galaxy clusters and their physical properties in one of the wide and deep survey fields, European Large Area ISO Survey North1(ELAIS-N1) and North2(ELAIS-N2) fields, covering sky area of and each. We also suggest a new useful color selection technique to separate 1 < z < 2 galaxies from low-z galaxies by combining multi-wavelength data from the UKIRT Infrared Deep Sky Survey Deep Extragalactic Survey (UKIDSS DXS/J and K band), Spitzer Wise-area InfraRed Extragalactic survey (SWIRE/two mid-infrared bands), Canada France Hawaii Telescope (CFHT/z band), Issac Newton Telescope(INT/ u, g, r, i, z band) and Infrared Medium-deep Survey(IMS/J band).

  • PDF

MECHANISM INDUCING GAS SUPPLY TO THE CENTRAL 10 PARSEC OF THE MILKY WAY

  • Morgan, Hannah L.;Kim, Sungsoo S.;Shin, Jihye;Chun, Kyungwon;Park, So-Myoung;Lee, Joowon;Minh, Young Chol
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.6
    • /
    • pp.117-123
    • /
    • 2020
  • We investigate the plausibility of mass return, from stellar mass loss processes within the central ~100 pc region of the Milky Way (the inner nuclear bulge), as a mass supply mechanism for the Circumnuclear Disk (CND). Gas in the Galactic disk migrates inward to the Galactic centre due to the asymmetric potential caused by the Galactic bar. The inward migration of gas stops and accumulates to form the central molecular zone (CMZ), at 100-200 pc from the Galactic center. It is commonly assumed that stars have formed in the CMZ throughout the lifetime of the Galaxy and have diffused inward to form a 'r-2 stellar cusp' within the inner nuclear bulge. We propose that the stars migrating inward from the CMZ supply gas to the inner nuclear bulge via stellar mass loss, resulting in the formation of a gas disk along the Galactic plane and subsequent inward migration down to the central 10 pc region (CND). We simulate the evolution of a gas distribution that initially follows the stellar distribution of the aforementioned stellar cusp, and illustrate the potential gas supply toward the CND.

Cosmological parameter constraints from galaxy-galaxy lensing with the Deep Lens Survey

  • Yoon, Mijin;Jee, Myungkook James
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.54.3-55
    • /
    • 2017
  • The Deep Lens Survey (DLS), a precursor to the Large Synoptic Survey Telescope (LSST), is a 20 deg2 survey carried out with NOAO's Blanco and Mayalltelescopes. DLS is unique in its depth reaching down to ~27th mags in BVRz bands. This enables a broad redshift baseline and is optimal for investigating cosmological evolution of the large scale structure. Galaxy-galaxylensing is a powerful tool to estimate averaged matter distribution around lensgalaxies by measuring shape distortions of background galaxies. The signal from galaxy-galaxy lensing is sensitive not only to galaxy halo properties, but also to cosmological environment at large scales. In this study, we measure galaxy-galaxy lensing and galaxy clustering, which together put strong constraints on the cosmological parameters. We obtain significant galaxy-galaxy lensing signals out to ~20 Mpc while tightly controlling systematics. The B-mode signals are consistent with zero. Our lens-source flip test indicates that minimal systematic errors are present in DLS photometric redshifts. Shear calibration is performed using high-fidelity galaxy image simulations. We demonstrate that the overall shape of the galaxy-galaxy lensing signal is well described by the halo model comprised of central and non-central halo contributions. Finally, we present our preliminary constraints on the matter density and the normalization parameters.

  • PDF

GALAXY EVOLUTION IN DISTANT UNIVERSE

  • IM MVUNGSHIN
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.135-140
    • /
    • 2005
  • This paper summarizes the recent progress made by our group at Seoul National University on studies of the evolution and formation of distant galaxies. Various research projects are currently underway, which include: (i) the number density of distant early-type galaxies (z < 1); (ii) the optical-NIR color gradient of nearby early-type galaxies; (iii) J - K-selected Extremely Red Objects (EROs) in field (CDF-S) and the cluster environment; and (iv) the Lyman-break galaxies in the Spitzer First Look Survey (FLS) field. These works will constrain the mass evolution and the star formation history of galaxies in different environments, and the results will serve as useful contraints on galaxy formation models.