• Title/Summary/Keyword: evo-devo

Search Result 3, Processing Time 0.009 seconds

Consideration of Evo-Devo in the Morphogenesis of Fractal Structures in Ammonites (융합연구를 위한 프랙털 생성의 Evo-Devo 생물학적 고찰)

  • Lee, Yu-Ri;Kim, Oc-Hee;Kim, Cheol-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.8
    • /
    • pp.185-190
    • /
    • 2017
  • Fractal patterns are visible regularities of form found in the natural world. The mathematics of fractals can explain spiral growth patterns of self-similarity in organisms. For example, ammonites have complex but regular patterns of suture lines, resulting in a fractal-like display. In this study, a small region (less than 1mm diameter) of the spiral center of a rarely well preserved ammonite (Eogaudryceras sp.) was examined under microscope. Interestingly, we found a differential change of suture shapes at early stages of animal development providing a model for the study of Evo-devo (evoutionary developmental biology). Evo-devo is a convergence science born out of the recognition of complexity from interactions between generative and adaptive forces.

Evo-Devo of Leaf Shape Control with a Special Emphasis on Unifacial Leaves in Monocots

  • Yamaguchi, Takahiro;Tsukaya, Hirokazu
    • Korean Journal of Plant Taxonomy
    • /
    • v.37 no.4
    • /
    • pp.351-361
    • /
    • 2007
  • In angiosperms, leaves typically develop as three-dimensional structure with dorsoventral, longitudinal, and lateral axes. We have shown that the control of two axes of leaves, longitudinal and lateral axis, can be genetically separable, and four classes of genes are responsible for the polar cell expansion and polar cell proliferation in Arabidopsis. In monocots, unifacial leaf, in which leaf surface consists only of abaxial identity, has been evolved in a number of divergent species. The unifacial leaves provide very unique opportunities for the developmental studies of the leaf axes formation in monocots, because their leaf polarities are highly disorganized. In addition, the mechanism of the parallel evolution of such drastic changes in leaf polarities is of interest from an evolutionary viewpoint. In this article, we describe our recent approaches to reveal the mechanism of unifacial leaf development and evolution, including recent advances in the leaf polarity specification in angiosperms.