• 제목/요약/키워드: evidence-based reasoning

검색결과 42건 처리시간 0.023초

행성 궤도의 모양에 관한 중학교 영재 학생들의 증거 기반 추론 (Middle School Gifted Students' Evidence-Based Reasoning about the Shape of a Planet's Orbit)

  • 오필석
    • 한국지구과학회지
    • /
    • 제42권1호
    • /
    • pp.118-131
    • /
    • 2021
  • 본 연구의 목적은 중학교 영재 학생들이 수행한 증거 기반 추론의 특징을 조사하는 것이었다. 연구를 위한 자료는 수도권에 위치한 한 대학교의 영재 교육원에서 중학교 영재 학생들이 비대면 방식으로 진행한 탐구 과제를 통해 수집되었다. 학생들에게 수성의 최대 이각을 관측한 자료를 제공하고 이 자료를 이용하여 수성의 공전 궤도를 작도하게 하였다. 또, 작도 전에 수성의 궤도에 대한 자신의 가설을 진술하게 하였으며 작도 결과를 증거로 삼아 수성 궤도의 모양을 추론하게 하였다. 학생들이 제출한 보고서의 내용을 분석하여 수성의 공전 궤도 모양에 관한 판단 유형을 5가지로 분류하고 가설 및 증거에 관한 추론 유형을 4가지로 분류한 후, 판단 유형에 따른 증거 기반 추론의 특징을 정리하였다. 분석 결과를 토대로, 증거 기반 추론에서는 증거에 대한 적절한 해석이 중요하고, 이론과 증거의 조화가 핵심적인 역할을 하며, 복수의 가설을 상정하는 것이 유리할 수 있음을 논의하였고, 지구과학 교육을 위한 시사점을 제안하였다.

신경계물리치료에서의 근거중심실기(1) -임상의사결정과정에 EBP 적용하기- (Evidence-Based Practice in Neurological Physical Therapy (1) -Applying EBP to Clinical Decision Making-)

  • 이문규;임재헌;김태윤
    • PNF and Movement
    • /
    • 제14권3호
    • /
    • pp.157-176
    • /
    • 2016
  • Purpose: The purpose of this study was to share an experience about processes and lessons learned to execute evidence-based practice (EBP) in neurological physical therapy. Methods: The most important thing in applying EBP to practice is to search, find, and appraise the existing evidence. Many evidence databases are available, such as CENTRAL, PEDro, PUBMED, and EMBASE. However, the knowledge represented in these databases is not always perfect. The practice model is a set of processes to resolve client problems. Therapists should make hypothesis-focused decisions through EBP. Integrating clinical reasoning and evidence is most important when it comes to the execution of EBP. Results: The process of EBP consisted of following: coming up with clinical questions, followed by searching for, appraising, evaluating, and integrating evidence. To integrate EBP into practice, it is necessary to consider clinical expertise, patient value and preferences, as well as research wth the best evidence. We provided an example of a clinical case with a stroke patient to show how this process and framework concerning clinical reasoning through evidences can be integrateds. During this process, we also utilized information technology to improve EBP ability. Conclusion: We should recognize what manner of information is needed to resolve eash patient's problem, and we should search for this information efficiently. Then, we should judge the value of the information obtained as it applies, to the clinical setting.

지구과학 문제 해결을 위한 귀추적 추론에서 결정적 증거와 결정적 자원 모델의 역할과 중요성 (The Roles and Importance of Critical Evidence (CE) and Critical Resource Models (CRMs) in Abductive Reasoning for Earth Scientific Problem Solving)

  • 오필석
    • 과학교육연구지
    • /
    • 제41권3호
    • /
    • pp.426-446
    • /
    • 2017
  • 본 연구의 목적은 암석에 관한 문제를 해결하는 대학생들의 사고 과정을 분석하여 지구과학의 귀추적 추론에서 결정적 증거(CE)와 결정적 자원 모델(CRM)의 역할과 중요성을 살펴보는 것이었다. 한 교육대학교에서 과학 심화 전공 과목을 수강하는 20명의 4학년 학생들이 연구에 참여하였다. 이들에게 많은 구멍이 발달한 퇴적암의 지질학적 과정을 귀추적으로 추론하여 모델로 나타내게 하고, 그 과정을 모델링 중심의 귀추적 추론에 관한 도식에 따라 분석하였다. 그 결과, 문제를 성공적으로 해결한 학생들의 추론은 다양한 알갱이와 많은 구멍을 CE로 삼아 퇴적암의 생성 과정과 풍화 작용을 CRM으로 각각 활성화하고 이들을 결합하여 과학적으로 타당한 설명 모델(SSEM)을 구성하는 특징이 있었다. 반면 문제 암석에 관하여 SSEM을 제안하지 못한 추론에서는 학생들이 많은 구멍이라는 증거로부터 화성암(현무암)의 생성 과정을, 다양한 알갱이라는 증거로부터 퇴적 작용을 자원 모델(RM)로 활성화하고, 이들로부터 자신들의 설명 모델(EM)을 구성하였다. 학생들이 SSEM을 구성하여 암석에 관한 지구과학 문제를 수월하게 해결하기 위해서는 문제 상황에 맞는 CE가 무엇인지 알고, 암석의 특징에 관하여 통합적 또는 시스템적으로 접근하며, 복수의 RM을 활용하고, 증거에 비추어 RM이나 EM을 평가할 필요가 있음을 제안하였다.

초등학생의 증거에 기반한 과학적 설명의 수정 과정 고찰 (Elementary Students' Modification of Their Scientific Explanations based on the Evidences in Water Rising in Burning Candle Inquiry)

  • 임희준
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제34권3호
    • /
    • pp.346-356
    • /
    • 2015
  • The purpose of this study was to explore the characteristics of elementary science gifted students' modification of scientific explanations based on evidences. For this study, sixteen $6^{th}$ elementary students were participated. The subjects of this study were enrolled in the program for the science gifted. Students were asked to generate initial hypotheses before experiment, and to modify and revise their scientific explanations based on the experiments about water rising in burning candle(s). All the processes of small group discussion during the inquiry were audio-recorded. Students' modification of their scientific explanations were appeared in three types: 1) appropriate connections among evidences, reasoning, and claims, 2) disconnections among evidences, reasoning, and claims and/or use of inappropriate reasoning, 3) scientific explanations without their own understanding. Other problems that students encountered in the processes of modification of their explanations were also discussed.

Claim-Evidence Approach for the Opportunity of Scientific Argumentation

  • Park, Young-Shin
    • 한국과학교육학회지
    • /
    • 제26권5호
    • /
    • pp.620-636
    • /
    • 2006
  • The purpose of this study was to analyze one science teacher's understanding of student argumentation and his explicit teaching strategies for implementing it in the classroom. One middle school science teacher, Mr. Field, and his students of 54 participated in this study. Data were collected through three semi-structured interviews, 60 hours of classroom observations, and two times of students' lab reports for eight weeks. Coding categories were developed describing the teacher's understanding of scientific argumentation and a description of the main teaching strategy, the Claim-Evidence Approach, was introduced. Toulmin's approach was employed to analyze student discourse as responses to see how much of this discourse was argumentative. The results indicated that Mr. Field defined scientific inquiry as the abilities of procedural skills through experimentation and of reasoning skills through argumentation. The Claim-Evidence Approach provided students with opportunities to develop their own claims based on their readings, design the investigation for evidence, and differentiate pieces of evidence from data to support their claims and refute others. During this approach, the teacher's role of scaffolding was critical to shift students' less extensive argumentation to more extensive argumentation through his prompts and questions. The different level of teacher's involvement, his explicit teaching strategy, and the students' scientific knowledge influenced the students' ability to develop and improve argumentation.

확률적 디폴트 규칙들을 이용한 비단조 상속추론 시스템 (A Nonmonotonic Inheritance Reasoner with Probabilistic Default Rules)

  • 이창환
    • 한국정보처리학회논문지
    • /
    • 제6권2호
    • /
    • pp.357-366
    • /
    • 1999
  • Inheritance reasoning has been widely used in the area of common sense reasoning in artificial intelligence. Although many inheritance reasoners have been proposed in artificial intelligence literature, most previous reasoning systems are lack of clear semantics, thus sometimes provide anomalous conclusions. In this paper, we describe a set-oriented inheritance reasoner and propose a method of resolving conflicts with clear semantics of defeasible rules. The semantics of default rule is provided by statistical analysis of $\chi$ method, and likelihood of rule is computed based on the evidence in the past. Two basic rules, specificity and generality, are defined to resolve conflicts effectively in the process of reasoning. We show that the mutual tradeoff between specificity and generality 추 prevent many anomalous results from occurring in traditional inheritance reasoners. An algorithm is provided. and some typical examples are given to show how the specificity/generality rules resolve conflicts effectively in inheritance reasoning.

  • PDF

Students Opportunities to Develop Scientific Argumentation in the Context of Scientific Inquiry: A Review of Literature

  • Flick, Larry;Park, Young-Shin
    • 한국지구과학회지
    • /
    • 제25권3호
    • /
    • pp.194-204
    • /
    • 2004
  • The purpose of this literature review is to investigate what kinds of research have been done about scientific inquiry in terms of scientific argumentation in the classroom context from the upper elementary to the high school levels. First, science educators argued that there had not been differentiation between authentic scientific inquiry by scientists and school scientific inquiry by students in the classroom. This uncertainty of goals or definition of scientific inquiry has led to the problem or limitation of implementing scientific inquiry in the classroom. It was also pointed out that students' learning science as inquiry has been done without opportunities of argumentation to understand how scientific knowledge is constructed. Second, what is scientific argumentation, then? Researchers stated that scientific inquiry in the classroom cannot be guaranteed only through hands-on experimentation. Students can understand how scientific knowledge is constructed through their reasoning skills using opportunities of argumentation based on their procedural skills using opportunities of experimentation. Third, many researchers emphasized the social practices of small or whole group work for enhancing students' scientific reasoning skills through argumentations. Different role of leadership in groups and existence of teachers' roles are found to have potential in enhancing students' scientific reasoning skills to understand science as inquiry. Fourth, what is scientific reasoning? Scientific reasoning is defined as an ability to differentiate evidence or data from theory and coordinate them to construct their scientific knowledge based on their collection of data (Kuhn, 1989, 1992; Dunbar & Klahr, 1988, 1989; Reif & Larkin, 1991). Those researchers found that students skills in scientific reasoning are different from scientists. Fifth, for the purpose of enhancing students' scientific reasoning skills to understand how scientific knowledge is constructed, other researchers suggested that teachers' roles in scaffolding could help students develop those skills. Based on this literature review, it is important to find what kinds of generalizable teaching strategies teachers use for students scientific reasoning skills through scientific argumentation and investigate teachers' knowledge of scientific argumentation in the context of scientific inquiry. The relationship between teachers' knowledge and their teaching strategies and between teachers teaching strategies and students scientific reasoning skills can be found out if there is any.

Electrical Fire Cause Diagnosis System based on Fuzzy Inference

  • Lee, Jong-Ho;Kim, Doo-Hyun
    • International Journal of Safety
    • /
    • 제4권2호
    • /
    • pp.12-17
    • /
    • 2005
  • This paper aims at the development of an knowledge base for an electrical fire cause diagnosis system using the entity relation database. The relation database which provides a very simple but powerful way of representing data is widely used. The system focused on database construction and cause diagnosis can diagnose the causes of electrical fires easily and efficiently. In order to store and access to the information concerned with electrical fires, the key index items which identify electrical fires uniquely are derived out. The knowledge base consists of a case base which contains information from the past fires and a rule base with rules from expertise. To implement the knowledge base, Access 2000, one of DB development tools under windows environment and Visual Basic 6.0 are used as a DB building tool. For the reasoning technique, a mixed reasoning approach of a case based inference and a rule based inference has been adopted. Knowledge-based reasoning could present the cause of a newly occurred fire to be diagnosed by searching the knowledge base for reasonable matching. The knowledge-based database has not only searching functions with multiple attributes by using the collected various information(such as fire evidence, structure, and weather of a fire scene), but also more improved diagnosis functions which can be easily wed for the electrical fire cause diagnosis system.

귀추적 사고 과정에서 모델의 역할 -이론과 경험 연구를 통한 도식화- (Roles of Models in Abductive Reasoning: A Schematization through Theoretical and Empirical Studies)

  • 오필석
    • 한국과학교육학회지
    • /
    • 제36권4호
    • /
    • pp.551-561
    • /
    • 2016
  • 본 연구의 목적은 과학 문제 해결을 위한 귀추적 사고 과정에서 모델의 역할을 이론 연구와 경험 연구를 통해 조사하는 것이었다. 이 연구는 지구과학 탐구 학습 프로그램을 개발하기 위한 설계 기반 연구의 맥락에서 이루어졌으며, 본 논문에서는 그 중 지질학 분야의 귀추적 탐구 활동을 재설계하는 과정을 중점적으로 다루었다. 이론 연구에서는 지구과학에 특징적인 연구 방법으로서 귀추와 모델링을 관련지어 연구한 대표적인 연구자들의 저작들을 집중적으로 고찰하였다. 그 결과로, 증거, 자원 모델, 설명 모델의 관계를 나타낸 모델링 중심의 귀추적 추론에 대한 잠정적인 도식을 제안하였다. 이 도식을 지질학 문제를 해결하는 전문가들의 사고 과정을 분석한 경험 연구를 통해 정교화 하였다. 새로운 도식에는 결정적 증거, 결정적 자원 모델, 과학적으로 타당한 설명 모델의 역할이 포함되었다. 이와 더불어 모델링 중심의 귀추적 탐구 수업에서 학생들의 사고 과정을 지원할 수 있는 교수법적인 시사점을 도출하였다.

학생들의 사전 지식이 밀도과제의 과학적 추론에 미치는 영향 (Effects of Students' Prior Knowledge on Scientific Reasoning in Density)

  • 양일호;권용주;김영신;장명덕;정진우;박국태
    • 한국과학교육학회지
    • /
    • 제22권2호
    • /
    • pp.314-335
    • /
    • 2002
  • The purpose of this study was to investigate the effects of students' prior knowledge on scientific reasoning process performing a task of controlling variables with computer simulation and to identify a number of problems that students encounter in scientific discovery. Subjects for this study included 60 Korean students: 27 fifth-grade students from an elementary school; 33 seventh-grade students from a middle school. The sinking objects task involving multivariable causal inference was used. The task was presented as computer simulation. The fifth and seventh-grade students participated individually. A subject was interviewed individually while the investigating a scientific reasoning task. Interviews were videotaped for subsequent analysis. The results of this study indicated that students' prior knowledge had a strong effect on students' experimental intent; the majority of participants focused largely on demonstrating their prior knowledge or their current hypothesis. In addition, studnets' theories that were part of one's prior knowledge had significant impact on formulating hypotheses, testing hypothesis, evaluating evidence, and revising hypothesis. This study suggested that students' performance was characterized by tendencies to generate uninformative experiments, to make conclusion based on inconclusive or insufficient evidence, to ignore, reject, or reinterpret data inconsistent with their prior knowledge, to focus on causal factors and ignore noncausal factors, to have difficulty disconfirming prior knowledge, to have confirmation bias and inference bias (anchoring bias).