• Title/Summary/Keyword: evidence-based reasoning

Search Result 42, Processing Time 0.027 seconds

Middle School Gifted Students' Evidence-Based Reasoning about the Shape of a Planet's Orbit (행성 궤도의 모양에 관한 중학교 영재 학생들의 증거 기반 추론)

  • Oh, Phil Seok
    • Journal of the Korean earth science society
    • /
    • v.42 no.1
    • /
    • pp.118-131
    • /
    • 2021
  • The purpose of this study was to investigate the characteristics of evidence-based reasoning practiced by middle school gifted students. Data were collected through an online task in which middle school students in gifted education institutes of a university located in the metropolitan area, Korea, performed inquiry about the shape of a planet's orbit. The students were given data of Mercury's greatest elongations and asked to draw the planet's orbit with the data. Each of the students was also asked to provide his or her hypothesis of Mercury's orbit before the drawing and to reason about the orbit again using his or her own drawing as evidence. The content analysis of the students' reports revealed 5 different types of judgement about the shape of Mercury's orbit, 4 types of reasoning about the hypothesis and evidence, and the characteristics of evidence-based reasoning within the judgement types. Based upon the analysis results, the importance of proper interpretations of evidence in evidence-based reasoning, the core role of the theory-evidence coordination, and the usefulness of working with multiple hypotheses were discussed. In addition, implications for earth science education were suggested.

Evidence-Based Practice in Neurological Physical Therapy (1) -Applying EBP to Clinical Decision Making- (신경계물리치료에서의 근거중심실기(1) -임상의사결정과정에 EBP 적용하기-)

  • Lee, Moon-Kyu;Lim, Jae-Heon;Kim, Tae-Yoon
    • PNF and Movement
    • /
    • v.14 no.3
    • /
    • pp.157-176
    • /
    • 2016
  • Purpose: The purpose of this study was to share an experience about processes and lessons learned to execute evidence-based practice (EBP) in neurological physical therapy. Methods: The most important thing in applying EBP to practice is to search, find, and appraise the existing evidence. Many evidence databases are available, such as CENTRAL, PEDro, PUBMED, and EMBASE. However, the knowledge represented in these databases is not always perfect. The practice model is a set of processes to resolve client problems. Therapists should make hypothesis-focused decisions through EBP. Integrating clinical reasoning and evidence is most important when it comes to the execution of EBP. Results: The process of EBP consisted of following: coming up with clinical questions, followed by searching for, appraising, evaluating, and integrating evidence. To integrate EBP into practice, it is necessary to consider clinical expertise, patient value and preferences, as well as research wth the best evidence. We provided an example of a clinical case with a stroke patient to show how this process and framework concerning clinical reasoning through evidences can be integrateds. During this process, we also utilized information technology to improve EBP ability. Conclusion: We should recognize what manner of information is needed to resolve eash patient's problem, and we should search for this information efficiently. Then, we should judge the value of the information obtained as it applies, to the clinical setting.

The Roles and Importance of Critical Evidence (CE) and Critical Resource Models (CRMs) in Abductive Reasoning for Earth Scientific Problem Solving (지구과학 문제 해결을 위한 귀추적 추론에서 결정적 증거와 결정적 자원 모델의 역할과 중요성)

  • Oh, Phil Seok
    • Journal of Science Education
    • /
    • v.41 no.3
    • /
    • pp.426-446
    • /
    • 2017
  • The purpose of this study was to analyze undergraduate students' reasoning for solving a problem about a rock and investigate the roles and importance of critical evidence (CE) and critical resource models (CRMs) in abductive reasoning. Participants were 20 senior undergraduate students enrolled in a science major course in a university of education. They were asked to abductively infer geologic processes of sedimentary rocks having a lot of holes and represent them with models. Their reasoning were analyzed according to a scheme for modeling-based abductive reasoning. As a result, successful student reasoning was characterized by using a diversity of grains and lots of holes as CE, activating the sedimentary rock formation and weathering as CRMs, and combining the CRMs into a scientifically sound explanatory model (SSEM). By contrast, in the reasoning unsuccessful in proposing a SSEM, students activated the igneous rock (basalt) formation and deposition as resource models (RMs) based on the evidence of the holes in the rocks and diverse grains, respectively, and used the RMs to construct their own explanatory models (EMs). It was suggested that to construct SSEMs to solve earth scientific problems about rocks, students need to know what could be CE in a particular problem situation, take an integrative or systemic approach to a rock problem, use multiple RMs, and evaluate RMs or EMs in light of evidence.

Elementary Students' Modification of Their Scientific Explanations based on the Evidences in Water Rising in Burning Candle Inquiry (초등학생의 증거에 기반한 과학적 설명의 수정 과정 고찰)

  • Lim, Heejun
    • Journal of Korean Elementary Science Education
    • /
    • v.34 no.3
    • /
    • pp.346-356
    • /
    • 2015
  • The purpose of this study was to explore the characteristics of elementary science gifted students' modification of scientific explanations based on evidences. For this study, sixteen $6^{th}$ elementary students were participated. The subjects of this study were enrolled in the program for the science gifted. Students were asked to generate initial hypotheses before experiment, and to modify and revise their scientific explanations based on the experiments about water rising in burning candle(s). All the processes of small group discussion during the inquiry were audio-recorded. Students' modification of their scientific explanations were appeared in three types: 1) appropriate connections among evidences, reasoning, and claims, 2) disconnections among evidences, reasoning, and claims and/or use of inappropriate reasoning, 3) scientific explanations without their own understanding. Other problems that students encountered in the processes of modification of their explanations were also discussed.

Claim-Evidence Approach for the Opportunity of Scientific Argumentation

  • Park, Young-Shin
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.5
    • /
    • pp.620-636
    • /
    • 2006
  • The purpose of this study was to analyze one science teacher's understanding of student argumentation and his explicit teaching strategies for implementing it in the classroom. One middle school science teacher, Mr. Field, and his students of 54 participated in this study. Data were collected through three semi-structured interviews, 60 hours of classroom observations, and two times of students' lab reports for eight weeks. Coding categories were developed describing the teacher's understanding of scientific argumentation and a description of the main teaching strategy, the Claim-Evidence Approach, was introduced. Toulmin's approach was employed to analyze student discourse as responses to see how much of this discourse was argumentative. The results indicated that Mr. Field defined scientific inquiry as the abilities of procedural skills through experimentation and of reasoning skills through argumentation. The Claim-Evidence Approach provided students with opportunities to develop their own claims based on their readings, design the investigation for evidence, and differentiate pieces of evidence from data to support their claims and refute others. During this approach, the teacher's role of scaffolding was critical to shift students' less extensive argumentation to more extensive argumentation through his prompts and questions. The different level of teacher's involvement, his explicit teaching strategy, and the students' scientific knowledge influenced the students' ability to develop and improve argumentation.

A Nonmonotonic Inheritance Reasoner with Probabilistic Default Rules (확률적 디폴트 규칙들을 이용한 비단조 상속추론 시스템)

  • Lee, Chang-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.2
    • /
    • pp.357-366
    • /
    • 1999
  • Inheritance reasoning has been widely used in the area of common sense reasoning in artificial intelligence. Although many inheritance reasoners have been proposed in artificial intelligence literature, most previous reasoning systems are lack of clear semantics, thus sometimes provide anomalous conclusions. In this paper, we describe a set-oriented inheritance reasoner and propose a method of resolving conflicts with clear semantics of defeasible rules. The semantics of default rule is provided by statistical analysis of $\chi$ method, and likelihood of rule is computed based on the evidence in the past. Two basic rules, specificity and generality, are defined to resolve conflicts effectively in the process of reasoning. We show that the mutual tradeoff between specificity and generality 추 prevent many anomalous results from occurring in traditional inheritance reasoners. An algorithm is provided. and some typical examples are given to show how the specificity/generality rules resolve conflicts effectively in inheritance reasoning.

  • PDF

Students Opportunities to Develop Scientific Argumentation in the Context of Scientific Inquiry: A Review of Literature

  • Flick, Larry;Park, Young-Shin
    • Journal of the Korean earth science society
    • /
    • v.25 no.3
    • /
    • pp.194-204
    • /
    • 2004
  • The purpose of this literature review is to investigate what kinds of research have been done about scientific inquiry in terms of scientific argumentation in the classroom context from the upper elementary to the high school levels. First, science educators argued that there had not been differentiation between authentic scientific inquiry by scientists and school scientific inquiry by students in the classroom. This uncertainty of goals or definition of scientific inquiry has led to the problem or limitation of implementing scientific inquiry in the classroom. It was also pointed out that students' learning science as inquiry has been done without opportunities of argumentation to understand how scientific knowledge is constructed. Second, what is scientific argumentation, then? Researchers stated that scientific inquiry in the classroom cannot be guaranteed only through hands-on experimentation. Students can understand how scientific knowledge is constructed through their reasoning skills using opportunities of argumentation based on their procedural skills using opportunities of experimentation. Third, many researchers emphasized the social practices of small or whole group work for enhancing students' scientific reasoning skills through argumentations. Different role of leadership in groups and existence of teachers' roles are found to have potential in enhancing students' scientific reasoning skills to understand science as inquiry. Fourth, what is scientific reasoning? Scientific reasoning is defined as an ability to differentiate evidence or data from theory and coordinate them to construct their scientific knowledge based on their collection of data (Kuhn, 1989, 1992; Dunbar & Klahr, 1988, 1989; Reif & Larkin, 1991). Those researchers found that students skills in scientific reasoning are different from scientists. Fifth, for the purpose of enhancing students' scientific reasoning skills to understand how scientific knowledge is constructed, other researchers suggested that teachers' roles in scaffolding could help students develop those skills. Based on this literature review, it is important to find what kinds of generalizable teaching strategies teachers use for students scientific reasoning skills through scientific argumentation and investigate teachers' knowledge of scientific argumentation in the context of scientific inquiry. The relationship between teachers' knowledge and their teaching strategies and between teachers teaching strategies and students scientific reasoning skills can be found out if there is any.

Electrical Fire Cause Diagnosis System based on Fuzzy Inference

  • Lee, Jong-Ho;Kim, Doo-Hyun
    • International Journal of Safety
    • /
    • v.4 no.2
    • /
    • pp.12-17
    • /
    • 2005
  • This paper aims at the development of an knowledge base for an electrical fire cause diagnosis system using the entity relation database. The relation database which provides a very simple but powerful way of representing data is widely used. The system focused on database construction and cause diagnosis can diagnose the causes of electrical fires easily and efficiently. In order to store and access to the information concerned with electrical fires, the key index items which identify electrical fires uniquely are derived out. The knowledge base consists of a case base which contains information from the past fires and a rule base with rules from expertise. To implement the knowledge base, Access 2000, one of DB development tools under windows environment and Visual Basic 6.0 are used as a DB building tool. For the reasoning technique, a mixed reasoning approach of a case based inference and a rule based inference has been adopted. Knowledge-based reasoning could present the cause of a newly occurred fire to be diagnosed by searching the knowledge base for reasonable matching. The knowledge-based database has not only searching functions with multiple attributes by using the collected various information(such as fire evidence, structure, and weather of a fire scene), but also more improved diagnosis functions which can be easily wed for the electrical fire cause diagnosis system.

Roles of Models in Abductive Reasoning: A Schematization through Theoretical and Empirical Studies (귀추적 사고 과정에서 모델의 역할 -이론과 경험 연구를 통한 도식화-)

  • Oh, Phil Seok
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.4
    • /
    • pp.551-561
    • /
    • 2016
  • The purpose of this study is to investigate both theoretically and empirically the roles of models in abductive reasoning for scientific problem solving. The context of the study is design-based research the goal of which is to develop inquiry learning programs in the domain of earth science, and the current article dealt with an early process of redesigning an abductive inquiry activity in geology. In the theoretical study, an extensive review was conducted with the literature addressing abduction and modeling together as research methods characterizing earth science. The result led to a tentative scheme for modeling-based abductive inference, which represented relationships among evidence, resource models, and explanatory models. This scheme was improved by the empirical study in which experts' reasoning for solving a geological problem was analyzed. The new scheme included the roles of critical evidence, critical resource models, and a scientifically sound explanatory model. Pedagogical implications for the support of student reasoning in modeling-based abductive inquiry in earth science was discussed.

Effects of Students' Prior Knowledge on Scientific Reasoning in Density (학생들의 사전 지식이 밀도과제의 과학적 추론에 미치는 영향)

  • Yang, II-Ho;Kwon, Yong-Ju;Kim, Young-Shin;Jang, Myoung-Duk;Jeong, Jin-Woo;Park, Kuk-Tae
    • Journal of The Korean Association For Science Education
    • /
    • v.22 no.2
    • /
    • pp.314-335
    • /
    • 2002
  • The purpose of this study was to investigate the effects of students' prior knowledge on scientific reasoning process performing a task of controlling variables with computer simulation and to identify a number of problems that students encounter in scientific discovery. Subjects for this study included 60 Korean students: 27 fifth-grade students from an elementary school; 33 seventh-grade students from a middle school. The sinking objects task involving multivariable causal inference was used. The task was presented as computer simulation. The fifth and seventh-grade students participated individually. A subject was interviewed individually while the investigating a scientific reasoning task. Interviews were videotaped for subsequent analysis. The results of this study indicated that students' prior knowledge had a strong effect on students' experimental intent; the majority of participants focused largely on demonstrating their prior knowledge or their current hypothesis. In addition, studnets' theories that were part of one's prior knowledge had significant impact on formulating hypotheses, testing hypothesis, evaluating evidence, and revising hypothesis. This study suggested that students' performance was characterized by tendencies to generate uninformative experiments, to make conclusion based on inconclusive or insufficient evidence, to ignore, reject, or reinterpret data inconsistent with their prior knowledge, to focus on causal factors and ignore noncausal factors, to have difficulty disconfirming prior knowledge, to have confirmation bias and inference bias (anchoring bias).