• Title/Summary/Keyword: event similarity

Search Result 69, Processing Time 0.035 seconds

A Semantic Aspect-Based Vector Space Model to Identify the Event Evolution Relationship within Topics

  • Xi, Yaoyi;Li, Bicheng;Liu, Yang
    • Journal of Computing Science and Engineering
    • /
    • v.9 no.2
    • /
    • pp.73-82
    • /
    • 2015
  • Understanding how the topic evolves is an important and challenging task. A topic usually consists of multiple related events, and the accurate identification of event evolution relationship plays an important role in topic evolution analysis. Existing research has used the traditional vector space model to represent the event, which cannot be used to accurately compute the semantic similarity between events. This has led to poor performance in identifying event evolution relationship. This paper suggests constructing a semantic aspect-based vector space model to represent the event: First, use hierarchical Dirichlet process to mine the semantic aspects. Then, construct a semantic aspect-based vector space model according to these aspects. Finally, represent each event as a point and measure the semantic relatedness between events in the space. According to our evaluation experiments, the performance of our proposed technique is promising and significantly outperforms the baseline methods.

A Study on the efficiency of similarity and clustering measure in Historical Writing Document (역사적 기록 문서에서 효율적인 유사도 및 클러스터링 측정에 관한 연구)

  • 한광덕
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.4
    • /
    • pp.94-101
    • /
    • 2002
  • It expected a lot of changes in mass media and documentation expression as documents on web are getting diverse, complex and massive. An Annals of The Chosun Dynasty is a very important document used for researching historical facts and is published as CD-Rom. However. The CD-Rom was composed as content-based and using simple search method, therefore it's very difficult to make determine event-relationship between documents factors. Because of that, we studied to discover event-relationship between documents through clustering and efficient similarity method among Annals of The Chosun Dynasty. For the research method, we discovered the best similarity method for historical written documents through simulation similarity measures of Annals of The Chosun Dynasty documents. Then we did simulation-clustering documents based on similarity probability. In evaluation of the clustered documents , the results were the same as when manually figured.

  • PDF

Normal and Malicious Application Pattern Analysis using System Call Event on Android Mobile Devices for Similarity Extraction (안드로이드 모바일 정상 및 악성 앱 시스템 콜 이벤트 패턴 분석을 통한 유사도 추출 기법)

  • Ham, You Joung;Lee, Hyung-Woo
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.125-139
    • /
    • 2013
  • Distribution of malicious applications developed by attackers is increasing along with general normal applications due to the openness of the Android-based open market. Mechanism that allows more accurate ways to distinguish normal apps and malicious apps for common mobile devices should be developed in order to reduce the damage caused by the rampant malicious applications. This paper analysed the normal event pattern from the most highly used game apps in the Android open market to analyse the event pattern from normal apps and malicious apps of mobile devices that are based on the Android platform, and analysed the malicious event pattern from the malicious apps and the disguising malicious apps in the form of a game app among 1260 malware samples distributed by Android MalGenome Project. As described, experiment that extracts normal app and malicious app events was performed using Strace, the Linux-based system call extraction tool, targeting normal apps and malicious apps on Android-based mobile devices. Relevance analysis for each event set was performed on collected events that occurred when normal apps and malicious apps were running. This paper successfully extracted event similarity through this process of analyzing the event occurrence characteristics, pattern and distribution on each set of normal apps and malicious apps, and lastly suggested a mechanism that determines whether any given app is malicious.

Micro-seismic monitoring in mines based on cross wavelet transform

  • Huang, Linqi;Hao, Hong;Li, Xibing;Li, Jun
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.1143-1164
    • /
    • 2016
  • Time Delay of Arrival (TDOA) estimation methods based on correlation function analysis play an important role in the micro-seismic event monitoring. It makes full use of the similarity in the recorded signals that are from the same source. However, those methods are subjected to the noise effect, particularly when the global similarity of the signals is low. This paper proposes a new approach for micro-seismic monitoring based on cross wavelet transform. The cross wavelet transform is utilized to analyse the measured signals under micro-seismic events, and the cross wavelet power spectrum is used to measure the similarity of two signals in a multi-scale dimension and subsequently identify TDOA. The offset time instant associated with the maximum cross wavelet transform spectrum power is identified as TDOA, and then the location of micro-seismic event can be identified. Individual and statistical identification tests are performed with measurement data from an in-field mine. Experimental studies demonstrate that the proposed approach significantly improves the robustness and accuracy of micro-seismic source locating in mines compared to several existing methods, such as the cross-correlation, multi-correlation, STA/LTA and Kurtosis methods.

Malicious Trojan Horse Application Discrimination Mechanism using Realtime Event Similarity on Android Mobile Devices (안드로이드 모바일 단말에서의 실시간 이벤트 유사도 기반 트로이 목마 형태의 악성 앱 판별 메커니즘)

  • Ham, You Joung;Lee, Hyung-Woo
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.31-43
    • /
    • 2014
  • Large number of Android mobile application has been developed and deployed through the Android open market by increasing android-based smart work device users recently. But, it has been discovered security vulnerabilities on malicious applications that are developed and deployed through the open market or 3rd party market. There are issues to leak user's personal and financial information in mobile devices to external server without the user's knowledge in most of malicious application inserted Trojan Horse forms of malicious code. Therefore, in order to minimize the damage caused by malignant constantly increasing malicious application, it is required a proactive detection mechanism development. In this paper, we analyzed the existing techniques' Pros and Cons to detect a malicious application and proposed discrimination and detection result using malicious application discrimination mechanism based on Jaccard similarity after collecting events occur in real-time execution on android-mobile devices.

N400 Event-related Potential and Gamma Band Activities during Visual Perception of Korean/English Words (한글 및 영어 단어의 시각적 인지 시 N400 사건관련 뇌전위 및 감마대역 활성화)

  • Yoon, Jin;Choi, Jung-Woo;Kim, Ja-Hyun;Kim, Kyung-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.6
    • /
    • pp.477-483
    • /
    • 2008
  • The observations of difference and similarity in brain activities involved in processing different languages have fundamental importance in cognitive neuroscience. The purpose of this study was to investigate the difference and similarity in temporal brain activation patterns due to the language difference during visual perception of Korean and English words under priming. Especially, we tried to find the difference in evoked spectral power in gamma-band, which is known to reflect feature binding. The stimulation was visually presented as word pairs belonging to same or different categories so that N400 event-related potential(ERP) was evoked. Average ERP analysis and spectral analysis of gamma-band activity(GBA) were performed on 12 normal Korean subjects. Several ERP components such as P1, N1, N400, and P600 could be identified consistently, and the differences in N1, N400, and P600 were observed. From the spectral analysis, we found that the evoked GBA(eGBA) was significantly larger for English at ${\sim}100$ ms poststimulus. The latency of the eGBA was also considerably delayed for English. Overall, the results on the ERP components and eGBA analyses seem to be commensurate with subjects' familiarity of each language, and the difficulty of perceiving words of each language. The methods of this study can also be applied for clinical purposes considering that the language-related processing can be greatly altered for the patients with neurological or psychiatric diseases.

Topic Similarity-based Event Routing Algorithm for Wireless Ad-Hoc Publish/Subscribe Systems (Ad-Hoc 무선 환경의 발행/구독 시스템을 위한 구독주제 유사도 기반의 이벤트 라우팅 알고리즘)

  • Nguyen, Hieu Trung;Oh, Sang-Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.11-22
    • /
    • 2009
  • For a wireless ad-hoc network, event routing algorithm of the publish/subscribe system is especially important for the performance of the system because of the dynamic characteristic and constraint network of its own. In this paper, we propose a new hybrid event routing algorithm. TopSim for efficient publish/subscribe system on the wireless ad-hoc network by extending the ShopParent algorithm by considering not only network overheads to choose a Parent of the publish/subscribe tree, but also topic similarity which is closeness of subscriptions. Our evaluation shows our proposed TopSim performs better for the case where a new joining node subscribed to the multiple topics and there is a node among Parent candidate nodes who subscribe to the ones in the list of multiple topics (related topics).

Correlation Analysis of Event Logs for System Fault Detection (시스템 결함 분석을 위한 이벤트 로그 연관성에 관한 연구)

  • Park, Ju-Won;Kim, Eunhye;Yeom, Jaekeun;Kim, Sungho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.2
    • /
    • pp.129-137
    • /
    • 2016
  • To identify the cause of the error and maintain the health of system, an administrator usually analyzes event log data since it contains useful information to infer the cause of the error. However, because today's systems are huge and complex, it is almost impossible for administrators to manually analyze event log files to identify the cause of an error. In particular, as OpenStack, which is being widely used as cloud management system, operates with various service modules being linked to multiple servers, it is hard to access each node and analyze event log messages for each service module in the case of an error. For this, in this paper, we propose a novel message-based log analysis method that enables the administrator to find the cause of an error quickly. Specifically, the proposed method 1) consolidates event log data generated from system level and application service level, 2) clusters the consolidated data based on messages, and 3) analyzes interrelations among message groups in order to promptly identify the cause of a system error. This study has great significance in the following three aspects. First, the root cause of the error can be identified by collecting event logs of both system level and application service level and analyzing interrelations among the logs. Second, administrators do not need to classify messages for training since unsupervised learning of event log messages is applied. Third, using Dynamic Time Warping, an algorithm for measuring similarity of dynamic patterns over time increases accuracy of analysis on patterns generated from distributed system in which time synchronization is not exactly consistent.

Content based Video Segmentation Algorithm using Comparison of Pattern Similarity (장면의 유사도 패턴 비교를 이용한 내용기반 동영상 분할 알고리즘)

  • Won, In-Su;Cho, Ju-Hee;Na, Sang-Il;Jin, Ju-Kyong;Jeong, Jae-Hyup;Jeong, Dong-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.10
    • /
    • pp.1252-1261
    • /
    • 2011
  • In this paper, we propose the comparison method of pattern similarity for video segmentation algorithm. The shot boundary type is categorized as 2 types, abrupt change and gradual change. The representative examples of gradual change are dissolve, fade-in, fade-out or wipe transition. The proposed method consider the problem to detect shot boundary as 2-class problem. We concentrated if the shot boundary event happens or not. It is essential to define similarity between frames for shot boundary detection. We proposed 2 similarity measures, within similarity and between similarity. The within similarity is defined by feature comparison between frames belong to same shot. The between similarity is defined by feature comparison between frames belong to different scene. Finally we calculated the statistical patterns comparison between the within similarity and between similarity. Because this measure is robust to flash light or object movement, our proposed algorithm make contribution towards reducing false positive rate. We employed color histogram and mean of sub-block on frame image as frame feature. We performed the experimental evaluation with video dataset including set of TREC-2001 and TREC-2002. The proposed algorithm shows the performance, 91.84% recall and 86.43% precision in experimental circumstance.

Robust Process Fault Detection System Under Asynchronous Time Series Data Situation (비동기 설비 신호 상황에서의 강건한 공정 이상 감지 시스템 연구)

  • Ko, Jong-Myoung;Choi, Ja-Young;Kim, Chang-Ouk;Sun, Sang-Joon;Lee, Seung-Jun
    • IE interfaces
    • /
    • v.20 no.3
    • /
    • pp.288-297
    • /
    • 2007
  • Success of semiconductor/LCD industry depends on its yield and quality of product. For the purpose, FDC (Fault Detection and Classification) system is used to diagnose fault state in main manufacturing processes by monitoring time series data collected by equipment sensors which represent various conditions of the equipment. The data set is segmented at the start and end of each product lot processing by a trigger event module. However, in practice, segmented sensor data usually have the features of data asynchronization such as different start points, end points, and data lengths. Due to the asynchronization problem, false alarm (type I error) and missed alarm (type II error) occur frequently. In this paper, we propose a robust process fault detection system by integrating a process event detection method and a similarity measuring method based on dynamic time warping algorithm. An experiment shows that the proposed system is able to recognize abnormal condition correctly under the asynchronous data situation.