• 제목/요약/키워드: event detection

검색결과 637건 처리시간 0.065초

DeepSDO: Solar event detection using deep-learning-based object detection methods

  • Baek, Ji-Hye;Kim, Sujin;Choi, Seonghwan;Park, Jongyeob;Kim, Jihun;Jo, Wonkeum;Kim, Dongil
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.46.2-46.2
    • /
    • 2021
  • We present solar event auto detection using deep-learning-based object detection algorithms and DeepSDO event dataset. DeepSDO event dataset is a new detection dataset with bounding boxed as ground-truth for three solar event (coronal holes, sunspots and prominences) features using Solar Dynamics Observatory data. To access the reliability of DeepSDO event dataset, we compared to HEK data. We train two representative object detection models, the Single Shot MultiBox Detector (SSD) and the Faster Region-based Convolutional Neural Network (R-CNN) with DeepSDO event dataset. We compared the performance of the two models for three solar events and this study demonstrates that deep learning-based object detection can successfully detect multiple types of solar events. In addition, we provide DeepSDO event dataset for further achievements event detection in solar physics.

  • PDF

An Efficient Complex Event Processing Algorithm based on Multipattern Sharing for Massive Manufacturing Event Streams

  • Wang, Jianhua;Lan, Yubin;Lu, Shilei;Cheng, Lianglun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권3호
    • /
    • pp.1385-1402
    • /
    • 2019
  • Quickly picking up some valuable information from massive manufacturing event stream usually faces with the problem of long detection time, high memory consumption and low detection efficiency due to its stream characteristics of large volume, high velocity, many variety and small value. Aiming to solve the problem above for the current complex event processing methods because of not sharing detection during the detecting process for massive manufacturing event streams, an efficient complex event processing method based on multipattern sharing is presented in this paper. The achievement of this paper lies that a multipattern sharing technology is successfully used to realize the quick detection of complex event for massive manufacturing event streams. Specially, in our scheme, we firstly use pattern sharing technology to merge all the same prefix, suffix, or subpattern that existed in single pattern complex event detection models into a multiple pattern complex event detection model, then we use the new detection model to realize the quick detection for complex events from massive manufacturing event streams, as a result, our scheme can effectively solve the problems above by reducing lots of redundant building, storing, searching and calculating operations with pattern sharing technology. At the end of this paper, we use some simulation experiments to prove that our proposed multiple pattern processing scheme outperforms some general processing methods in current as a whole.

An Efficient Complex Event Detection Algorithm based on NFA_HTS for Massive RFID Event Stream

  • Wang, Jianhua;Liu, Jun;Lan, Yubin;Cheng, Lianglun
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.989-997
    • /
    • 2018
  • Massive event stream brings us great challenges in its volume, velocity, variety, value and veracity. Picking up some valuable information from it often faces with long detection time, high memory consumption and low detection efficiency. Aiming to solve the problems above, an efficient complex event detection method based on NFA_HTS (Nondeterministic Finite Automaton_Hash Table Structure) is proposed in this paper. The achievement of this paper lies that we successfully use NFA_HTS to realize the detection of complex event from massive RFID event stream. Specially, in our scheme, after using NFA to capture the related RFID primitive events, we use HTS to store and process the large matched results, as a result, our scheme can effectively solve the problems above existed in current methods by reducing lots of search, storage and computation operations on the basis of taking advantage of the quick classification and storage technologies of hash table structure. The simulation results show that our proposed NFA_HTS scheme in this paper outperforms some general processing methods in reducing detection time, lowering memory consumption and improving event throughput.

FES 보행을 위한 보행 이벤트 검출 (Gait-Event Detection for FES Locomotion)

  • 허지운;김철승;엄광문
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.170-178
    • /
    • 2005
  • The purpose of this study is to develop a gait-event detection system, which is necessary for the cycle-to-cycle FES control of locomotion. Proposed gait event detection system consists of a signal measurement part and gait event detection part. The signal measurement was composed of the sensors and the LabVIEW program for the data acquisition and synchronization of the sensor signals. We also used a video camera and a motion capture system to get the reference gait events. Machine learning technique with ANN (artificial neural network) was adopted for automatic detection of gait events. 2 cycles of reference gait events were used as the teacher signals for ANN training and the remnants ($2\sim5$ cycles) were used fur the evaluation of the performance in gait-event detection. 14 combinations of sensor signals were used in the training and evaluation of ANN to examine the relationship between the number of sensors and the gait-event detection performance. The best combinations with minimum errors of event-detection time were 1) goniometer, foot-switch and 2) goniometer, foot-switch, accelerometer x(anterior-posterior) component. It is expected that the result of this study will be useful in the design of cycle-to-cycle FES controller.

Fault-Tolerant Event Detection in Wireless Sensor Networks using Evidence Theory

  • Liu, Kezhong;Yang, Tian;Ma, Jie;Cheng, Zhiming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권10호
    • /
    • pp.3965-3982
    • /
    • 2015
  • Event detection is one of the key issues in many wireless sensor network (WSN) applications. The uncertainties that are derived from the instability of sensor node, measurement noise and incomplete sampling would influence the performance of event detection to a large degree. Many of the present researches described the sensor readings with crisp values, which cannot adequately handle the uncertainties inhered in the imprecise sensor readings. In this paper, a fault-tolerant event detection algorithm is proposed based on Dempster-Shafer (D-S) theory (also called evidence theory). Instead of crisp values, all possible states of the event are represented by the Basic Probability Assignment (BPA) functions, with which the output of each sensor node are characterized as weighted evidences. The combination rule was subsequently applied on each sensor node to fuse the evidences gathered from the neighboring nodes to make the final decision on whether the event occurs. Simulation results show that even 20% nodes are faulty, the accuracy of the proposed algorithm is around 80% for event region detection. Moreover, 97% of the error readings have been corrected, and an improved detection capability at the boundary of the event region is gained by 75%. The proposed algorithm can enhance the detection accuracy of the event region even in high error-rate environment, which reflects good reliability and robustness. The proposed algorithm is also applicable to boundary detection as it performs well at the boundary of the event.

음향 센서 네트워크에서의 노드 레벨 이벤트 탐지 성능향상을 위한 학습 기반 CFAR 알고리즘 개선 (Learning-based Improvement of CFAR Algorithm for Increasing Node-level Event Detection Performance in Acoustic Sensor Networks)

  • 김영수
    • 대한임베디드공학회논문지
    • /
    • 제15권5호
    • /
    • pp.243-249
    • /
    • 2020
  • Event detection in wireless sensor networks is a key requirement in many applications. Acoustic sensors are one of the most frequently used sensors for event detection in sensor networks, but they are sensitive and difficult to handle because they vary greatly depending on the environment and target characteristics of the sensor field. In this paper, we propose a learning-based improvement of CFAR algorithm for increasing node-level event detection performance in acoustic sensor networks, and verify the effectiveness of the designed algorithm by comparing and evaluating the event detection performance with other algorithms. Our experimental results demonstrate the superiority of the proposed algorithm by increasing the detection accuracy by more than 45.16% by significantly reducing false positives by 7.97 times while slightly increasing the false negative compared to the existing algorithm.

사건중심 뉴스기사 자동요약을 위한 사건탐지 기법에 관한 연구 (A Study on an Effective Event Detection Method for Event-Focused News Summarization)

  • 정영미;김용광
    • 정보관리학회지
    • /
    • 제25권4호
    • /
    • pp.227-243
    • /
    • 2008
  • 이 연구에서는 사건중심 뉴스기사 요약문을 자동생성하기 위해 뉴스기사들을 SVM 분류기를 이용하여 사건 주제범주로 먼저 분류한 후, 각 주제범주 내에서 싱글패스 클러스터링 알고리즘을 통해 특정한 사건 관련 기사들을 탐지하는 기법을 제안하였다. 사건탐지 성능을 높이기 위해 고유명사에 가중치를 부여하고, 뉴스의 발생시간을 고려한 시간벌점함수를 제안하였다. 또한 일정 규모 이상의 클러스터를 분할하여 적절한 크기의 사건 클러스터를 생성하도록 수정된 싱글패스 알고리즘을 사용하였다. 이 연구에서 제안한 사건탐지 기법의 성능은 단순 싱글패스 클러스터링 기법에 비해 정확률, 재현율, F-척도에서 각각 37.1%, 0.1%, 35.4%의 성능 향상률을 보였고, 오보율과 탐지비용에서는 각각 74.7%, 11.3%의 향상률을 나타냈다.

센서 네트워크에서 최소 경계 다각형을 이용한 에너지 효율적인 군집 이벤트 탐지 기법 (Energy Efficient Cluster Event Detection Scheme using MBP in Wireless Sensor Networks)

  • 권현호;성동욱;유재수
    • 한국콘텐츠학회논문지
    • /
    • 제10권12호
    • /
    • pp.101-108
    • /
    • 2010
  • 센서네트워크에서 노드의 에너지 제약 특성을 고려하여 군집 이벤트를 위한 에너지 효율적인 탐지 기법에 대한 다양한 연구들이 진행되고 있다. 기존에 제안된 군집 이벤트 탐지 기법들은 이벤트를 탐지한 센서 중 군집의 경계에 위치한 노드의 정보만을 추출하여 기지국으로 전송하는 방식을 취한다. 하지만 군집 이벤트의 범위가 넓어지고 센서의 배포 밀도가 높아지면 이벤트 경계에 위치한 노드들의 수 또한 증가하여 많은 전송 비용을 필요로 한다. 본 논문에서는 이벤트 경계 노드들의 정보를 압축/요약하여 나타낼 수 있는 인-네트워크 최소 경계 다각형을 이용한 에너지 효율적인 군집 이벤트 탐지 기법을 제안한다. 제안하는 기법은 대규모 센서 네트워크 환경에서 MBP 생성기법을 통해 군집 이벤트의 경계 정보를 표현한다. 제안하는 기법의 우수성을 보이기 위해 제안하는 기법과 기존 기법과의 성능평가를 수행하였다. 성능평가 결과, 최대 92%이상의 정확도를 유지하며 80.13% 에너지 소모량이 감소하였다.

Event Detection on Motion Activities Using a Dynamic Grid

  • Preechasuk, Jitdumrong;Piamsa-nga, Punpiti
    • Journal of Information Processing Systems
    • /
    • 제11권4호
    • /
    • pp.538-555
    • /
    • 2015
  • Event detection based on using features from a static grid can give poor results from the viewpoint of two main aspects: the position of the camera and the position of the event that is occurring in the scene. The former causes problems when training and test events are at different distances from the camera to the actual position of the event. The latter can be a source of problems when training events take place in any position in the scene, and the test events take place in a position different from the training events. Both issues degrade the accuracy of the static grid method. Therefore, this work proposes a method called a dynamic grid for event detection, which can tackle both aspects of the problem. In our experiment, we used the dynamic grid method to detect four types of event patterns: implosion, explosion, two-way, and one-way using a Multimedia Analysis and Discovery (MAD) pedestrian dataset. The experimental results show that the proposed method can detect the four types of event patterns with high accuracy. Additionally, the performance of the proposed method is better than the static grid method and the proposed method achieves higher accuracy than the previous method regarding the aforementioned aspects.

In-network Distributed Event Boundary Computation in Wireless Sensor Networks: Challenges, State of the art and Future Directions

  • Jabeen, Farhana;Nawaz, Sarfraz
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권11호
    • /
    • pp.2804-2823
    • /
    • 2013
  • Wireless sensor network (WSN) is a promising technology for monitoring physical phenomena at fine-grained spatial and temporal resolution. However, the typical approach of sending each sensed measurement out of the network for detailed spatial analysis of transient physical phenomena may not be an efficient or scalable solution. This paper focuses on in-network physical phenomena detection schemes, particularly the distributed computation of the boundary of physical phenomena (i.e. event), to support energy efficient spatial analysis in wireless sensor networks. In-network processing approach reduces the amount of network traffic and thus achieves network scalability and lifetime longevity. This study investigates the recent advances in distributed event detection based on in-network processing and includes a concise comparison of various existing schemes. These boundary detection schemes identify not only those sensor nodes that lie on the boundary of the physical phenomena but also the interior nodes. This constitutes an event geometry which is a basic building block of many spatial queries. In this paper, we introduce the challenges and opportunities for research in the field of in-network distributed event geometry boundary detection as well as illustrate the current status of research in this field. We also present new areas where the event geometry boundary detection can be of significant importance.