• Title/Summary/Keyword: evaluation of structural capacity

Search Result 609, Processing Time 0.025 seconds

A Study on Evaluation of Performance Point for the Latticed Dome (래티스 돔의 성능점 산정에 관한 연구)

  • Han Sang-Eul;Lee Sang-Joo;Gan Eun-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.317-324
    • /
    • 2006
  • Performance-based design concept is needed to evaluate the seismic capacity of building. In this study, the method estimating the performance point of the spatial structures based on capacity spectrum method (CSM) is proposed. And for efficient evaluation for the performance point of the spatial structures, the algorithm to convert spatial structural system to ESDOF system is simulated Its efficiency is confirmed by comparing with time history analysis of full model. And dynamic behaviors of spatial structures are examined by using this method. At last, evaluation of structural performance according to variation of stiffness after plastic deformation on the substructures is carried out.

  • PDF

Difference of Deterioration According to Exposed Condition of Column in Wooden Traditional Building (노출 환경에 따른 목조 고건축물 기둥의 열화 차이)

  • Kim, Gwang-Chul;Bae, Mun-Sung;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.58-68
    • /
    • 2003
  • Capacity assessment of structural member must be ahead of the safety assessment of wooden traditional building. Capacity assessment of structural member has been dependent on empirical method with visual inspection even now. Safety assessment of building, however, can be more correct and reasonable provided non-destructive evaluation technique that scientific and logic would be used to evaluate the capacity of structural member. For that purpose, non-destructive evaluation technique was applied to column among many structural members of wooden traditional building to examine the possibility of capacity assessment of structural member. And then, those data will be used as a basic data for capacity assessment of structural member in a following study. Specially, deterioration progress levels of column according to exposed condition were measured. Similar results were obtained as compared with results of visual inspection, so there was a good possibility of application for non-destructive evaluation technique.

Capacity Spectrum Method for Seismic Performance Evaluation of Multi-Story Building Based on the Story Drift (층간변위를 기반으로 한 다층구조물의 내전성능 평가를 위한 역량스펙트럼법의 개발)

  • Kim, Sun-Pil;Kim, Doo-Kie;Kwak, Hyo-Gyoung;Ko, Sung-Huck;Seo, Hyeong-Yeol
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.205-210
    • /
    • 2007
  • The existing capacity spectrum method (CSM) is based on the displacement based approach for seismic performance and evaluation. Currently, in the domestic and overseas standard concerning seismic design, the CSM to obtain capacity spectrum from capacity curve and demand spectrum from elastic response spectrum is presented. In the multistory building, collapse is affected more by drift than by displacement, but the existing CSM does not work for story drift. Therefore, this paper proposes an improved CSM to estimate story drift of structures through seismic performance and evaluation. It uses the ductility factor in the A-T domain to obtain constant-ductility response spectrum from earthquake response of inelastic system using the drift and capacity curve from capacity analysis of structure.

  • PDF

Load carrying capacity Evaluation Considering the Structural Characteristics of Bridge Bearing (교량받침의 거동특성을 고려한 내하력 평가)

  • Park, Kil-Hyun;Yang, Seung-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.209-216
    • /
    • 2003
  • Load carrying capacity evaluation is very important element in maintenance of bridge. There are several reasons about differences in deflection caused by loading test and structural analysis. Especially when we do modeling uniformly without considering real structural characteristics of support, this problem can be more deepened. This computes modification factor high so we may evaluate the load carrying capacity more than fact. In this study, we do structural analysis nearing real structure with negative bending moment of support that computes considering structural characteristics of support, and then evaluate load carrying capacity.

Seismic performance evaluation of a RC special moment frame

  • Kim, Taewan;Kim, Jinkoo
    • Structural Engineering and Mechanics
    • /
    • v.27 no.6
    • /
    • pp.671-682
    • /
    • 2007
  • The probability and the reliability-based seismic performance evaluation procedure proposed in the FEMA-355F was applied to a reinforced concrete moment frame building in this study. For the FEMA procedure, which was originally developed for steel moment frame structures, to be applied to other structural systems, the capacity should be re-defined and the factors reflecting the uncertainties related to capacity and demand need to be determined. To perform the evaluation procedure a prototype building was designed per IBC 2003, and inelastic dynamic analyses were conducted applying site-specific ground motions to determine the parameters for performance evaluation. According to the analysis results, distribution of the determined capacities turned out to be relatively smaller than that of the demands, which showed that the defined capacity was reasonable. It was also shown that the prototype building satisfied the target performance since the determined confidence levels exceeded the objectives for both local and global collapses.

An Improved Method for the Evaluation of Load Carrying Capacity of Existing Bridges (교량 구조물의 개선된 내하력 평가기법)

  • Oh, Byung-Whan;Kim, Ki-Su;Shin, Ho-Song;Lee, Woong-Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.1 no.1
    • /
    • pp.53-64
    • /
    • 1997
  • Recently, safety evaluation of structures has received great concern in this country. One major problem in safety evaluation is that the results are often quite different depending upon evaluation authority. This is mainly due to arbitrary selection of various modification factors when employing allowable stress method for safety evaluation, The purpose of the present study is, therefore, to establish a rational method to determine the modification factors, especially the stress modification factor and the deterioration modification factor based on visual examination. It is thought that the proposed method yields a rational and consistent result for safety evaluation and may efficiently be used for realistic evaluation of load capacity of bridge structures.

  • PDF

Seismic capacity re-evaluation of the 480V motor control center of South Korea NPPs using earthquake experience and experiment data

  • Choi, Eujeong;Kim, Min Kyu;Choi, In-Kil
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1363-1373
    • /
    • 2022
  • The recent seismic events that occurred in South Korea have increased the interest in the re-evaluation of the seismic capacity of nuclear power plant (NPP) equipment, which is often conservatively estimated. To date, various approaches-including the Bayesian method proposed by the United States (US) Electric Power Research Institute -have been developed to quantify the seismic capacity of NPP equipment. Among these, the Bayesian approach has advantages in accounting for both prior knowledge and new information to update the probabilistic distribution of seismic capacity. However, data availability and region-specific issues exist in applying this Bayesian approach to Korean NPP equipment. Therefore, this paper proposes to construct an earthquake experience database by combining available earthquake records at Korean NPP sites and the general location of equipment within NPPs. Also, for the better representation of the seismic demand of Korean earthquake datasets, which have distinct seismic characteristics from those of the US at a high-frequency range, a broadband frequency range optimization is suggested. The proposed data construction and seismic demand optimization method for seismic capacity re-evaluation are demonstrated and tested on a 480 V motor control center of a South Korea NPP.

Evaluation of Ultimate Pressure Capacity of Prestressed Concrete Containment Building Considering Aging of Materials (재료의 경년상태를 고려한 PSC격납건물의 극한내압능력 평가)

  • 이상근;송영철;권용길;한상훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.805-810
    • /
    • 2000
  • The purpose of this study is to predict long-term structural safety on the Yonggwang Unit 3 prestressed concrete containment building. The aging-related degradations of its main structural materials are investigated and the effects of the property variation of time-dependent materials on the structural behavior of containment building are also assessed through the analysis on the ultimate pressure capacity. The nonlinear finite element analyses for both the design criteria condition a the present aging condition are conducted to assess the present structural capacity of the containment building As a result, it is verified that the structural capacity of the Yonggwang Unit 3 containment building under the present aging condition is judged to be still rugged. n addition, the sensitivity of the ultimate pressrue capacity of containment building according to th degradation levels of the structural materials are assessed. Finally, it is showed that the sensitivity levels are in the order of the tendon, rebar and concrete in case of individual material degradations, and the tendon-rebar, tendon-concrete and rebar-concrete in case of coupled material degradations.

  • PDF

Modeling of the Spatial Structures for Dynamic Analysis and Evaluation of Performance Point Based on Capacity Spectrum Method (동적해석을 위한 대공간 구조물의 모델링 및 능력스펙트럼법에 의한 성능점 산정)

  • Kan, Eun-Young;Lee, Sang-Ju;Han, Sang-Eul
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.49-57
    • /
    • 2006
  • Performance based seismic design is a very efficient method in evaluating the seismic capacity of building. In this study, the method estimating the performance point of the spatial structures based on capacity spectrum method(CSM) is proposed. And for efficient evaluation for the performance point of the spatial structures, the algorithm to convert spatial structural system to ESDOF system is proposed. Its efficiency is confirmed by comparing with time history analysis of full model. And dynamic behaviors of spatial structures are examined by using this method. At last, evaluation of structural performance according to variation of stiffness after plastic deformation is carried out.

  • PDF