• Title/Summary/Keyword: evaluation errors

Search Result 1,083, Processing Time 0.025 seconds

Studies on Error Propagation by Simulation Model -Main description of experments of aero-triangulation- (횡응모형에 의한 오차전파에 관한 연구 -공중삼각측량의 실험을 중심으로-)

  • 백은기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.1
    • /
    • pp.4021-4037
    • /
    • 1976
  • This paper describes the actual experiments of the error propagation and studies of analytical photogrammetry using the simulation method in which we can find the causes of the errors. These studies and the results give the valuable data which are very effective for systematically controlling the errors in aerial triangulation. The main contents in my paper are as follows: 1. Dose the scale errors in the successive models in the form of normal distribution appear when the observation errors propagate in the form of normal distribution\ulcorner 2. In what form does this scale error propagation in the actual model appear\ulcorner 3. When the causes of the scale error propagation are found, is the evaluation standard determined normally\ulcorner 4. What degree of influence is there form the constant errors\ulcorner I have done several experiments using the simulation method technique to solve the complicated error propgation of aerial triangulation which is the effective means to research the relations between cause and effect. In this paper, the studies have concentrated on the following points of simulation experiments. (1) The first part descries how we can produce the soft program of the simulation experiment. (2) The second part is the method propagating the errors in the simulation models and the kinds of errors. (3) The final part is the most important; that is the analyzing and evaluation of control during actual work. From the above-mentioned points, it is said that these studies are a very important development in the field of controlling and managing aerial photogrammetry and especially in the case of error propagation, we can clearly find the causes of the errors and steps and parts of errors generated when we use these techniques.

  • PDF

Development of an E-learning Education Program for Preventing Nursing Errors and Adverse Events of Operating Room Nurses (수술실의 간호오류 및 과오 예방을 위한 E-learning 실무교육 프로그램의 개발 및 평가)

  • Kim, Jung-Soon;Kim, Myung-Soo;Hwang, Sun-Kyung
    • Korean Journal of Adult Nursing
    • /
    • v.17 no.5
    • /
    • pp.697-708
    • /
    • 2005
  • Purpose: This study was to develop, implement, and evaluate an e-learning education program for improving practical knowledge and preventing nursing errors and adverse events of nurses working in the operating room (OR). Method: The e-learning program was developed and evaluated according to the following processes: 1) preparation phase 2) implementation phase 3) evaluation phase. In evaluation phase, the effectiveness was analyzed based on the Kirkpatrick's model. Results: The e-learning program consisted of OR basic nursing skills and techniques and nursing activities' manual based on the categories of nursing errors: surgical operation preparation, nursing skills and techniques, environment management, patient safety and comfort, and patient monitoring. The program was provided through on-line, http://cafe.daum.net/pnuhorn, for 4 weeks. The mean score(percent) of participants' satisfaction was $21.24{\pm}1.71$(68.2%). Their total knowledge level was significantly improved(Z=-3.00, p=.003) and specifically in the category of environment management(Z=-3.77, p<.001) and patient monitoring(Z=-2.46, p=.014). The occurrence of nursing errors or adverse events was a little decreased, but not statistically significant(Z=-3.10, p=.756). Conclusion: E-learning for nurses is one way of effective and efficient teaching-learning strategies. For better e-learning, it is important to develop the vital content of the education and objective measures for detecting nursing errors and adverse events.

  • PDF

The Application of Qualitative Evaluation for Golf Swills field Lesson (골프스윙 현장지도를 위한 정성적 평가 적용)

  • Yu, Seung-Won
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.323-336
    • /
    • 2009
  • The purpose of the current study was to research scientific basis and necessity of supplementary materials for field lesson out of golf swing teaching methods. As the subject of study, skillful tour pro golfers were chosen to reinterpret field lesson results for driver swing from the viewpoint of kinematics. In addition, through precise analysis, this study developed a case to verify the validity and error of field lesson. As a result, field lesson showed a slight difference among qualitative evaluation of kinematical analysis of techniques, subjects of study, and items. Accordingly, there was a little difference between two methods in view of evaluation of errors that 5 subjects of the study have shown. However, there was a significant difference in compensation to prevent causes of error and errors. Based on instructor's experience most errors could be evaluated. Therefore, feedback for error correction based on instructor's experience showed a significant difference from qualitative evaluation of kinematical analysis of techniques. In conclusion, the following are required for correct golf swing lesson; instant feedback through field lesson and qualitative evaluation of kinematical analysis of techniques to determine fundamental causes correctly.

Evaluation Method of the Multi-axis Errors for Machining Centers (머시닝센터의 다축오차 평가 방법)

  • Hwang, Joo-Ho;Shim, Jong-Youp;Ko, Tae-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.904-914
    • /
    • 2011
  • The volumetric errors of CNC machining centers are determined by 21 errors, including 3 linear errors, 6 straightness errors, 3 perpendicular errors, 9 angular errors and non-rigid body errors of the machine tool. It is very time consuming and hard to measure all of these errors in which laser interferometer and other parts are used directly. Hence, as many as 21 separate setups and measurements are needed for the linear, straightness, angular and perpendicular errors. In case of the 5-axis machining centers, two more rotary tables are used. It can make 35 error sources of the movement. Therefore, the measured errors of multi movements of the 5-axis tables are very complicated, even if the relative measured errors are measured. This paper describes the methods, those analyze the error sources of the machining centers. Those are based on shifted diagonal measurements method (SDM), R-test and Double ball bar. In case, the angular errors of machine are small enough comparing with others, twelve errors including three linear position errors, six straightness errors and three perpendicular errors can be calculated by using SDM. To confirm the proposed method, SDM was applied to measuring 3 axes of machine tools and compared with directly measurement of each errors. In addition, the methods for measuring relative errors of multi-axis analysis methods using R-test and Double Ball Bar are introduced in this paper.

Analysis of decimation techniques to improve computational efficiency of a frequency-domain evaluation approach for real-time hybrid simulation

  • Guo, Tong;Xu, Weijie;Chen, Cheng
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1197-1220
    • /
    • 2014
  • Accurate actuator tracking is critical to achieve reliable real-time hybrid simulation results for earthquake engineering research. The frequency-domain evaluation approach provides an innovative way for more quantitative post-simulation evaluation of actuator tracking errors compared with existing time domain based techniques. Utilizing the Fast Fourier Transform the approach analyzes the actuator error in terms of amplitude and phrase errors. Existing application of the approach requires using the complete length of the experimental data. To improve the computational efficiency, two techniques including data decimation and frequency decimation are analyzed to reduce the amount of data involved in the frequency-domain evaluation. The presented study aims to enhance the computational efficiency of the approach in order to utilize it for future on-line actuator tracking evaluation. Both computational simulation and laboratory experimental results are analyzed and recommendations on the two decimation factors are provided based on the findings from this study.

Computer aided dynamic accuracy evaluation on CNC machine tools (전산기를 이용한 CNC 공작 기계의 동적 정밀도의 평가에 대한 연구)

  • Kwon, H.D.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.7
    • /
    • pp.24-28
    • /
    • 1996
  • In this paper, a new measurement system has been developed for measuring servo errors of CNC machine tools. Unlike the ball link bar method using circular path, the developed system uses two orthogonal straight paths for measurement of errors, giving relatively short test length. For position measurment, linear displacement sensor and steel cube have been designed, and the software for relevant data sampling and error evaluation has been implemented.

  • PDF

A comparison of grammatical error detection techniques for an automated english scoring system

  • Lee, Songwook;Lee, Kong Joo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.760-770
    • /
    • 2013
  • Detecting grammatical errors from a text is a long-history application. In this paper, we compare the performance of two grammatical error detection techniques, which are implemented as a sub-module of an automated English scoring system. One is to use a full syntactic parser, which has not only grammatical rules but also extra-grammatical rules in order to detect syntactic errors while paring. The other one is to use a finite state machine which can identify an error covering a small range of an input. In order to compare the two approaches, grammatical errors are divided into three parts; the first one is grammatical error that can be handled by both approaches, and the second one is errors that can be handled by only a full parser, and the last one is errors that can be done only in a finite state machine. By doing this, we can figure out the strength and the weakness of each approach. The evaluation results show that a full parsing approach can detect more errors than a finite state machine can, while the accuracy of the former is lower than that of the latter. We can conclude that a full parser is suitable for detecting grammatical errors with a long distance dependency, whereas a finite state machine works well on sentences with multiple grammatical errors.

Development of an Performance Evaluation Method for Vehicle Detector Speed Measurement Applying Uncertainty in Measurement (측정불확도를 적용한 차량검지기 속도측정 성능평가방법 개발)

  • Lee, Hwan-Pil;Kim, Yong-Man;Kang, Dong-Yun
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.165-174
    • /
    • 2012
  • In this study, a method for evaluating the performance of speed measurements was developed to assess the qualities of a vehicle detector. The evaluation method considers measurement errors that are reflected in a reference speed. For this, the concept of uncertainty in measurement was applied to the development method. Other factors such as precedent study, statistical processing techniques, and speed measurement performance method of traffic enforcement equipment and vehicle detection systems were also reviewed. Through this process, the problems of the existing evaluation methods were derived and developed for the new performance evaluation method. Vehicle detectors that are installed in the field were evaluated using the traditional assessment methods and the developed method. As a result, for traditional assessment methods, it was found that evaluation criteria are acceptable, while developed method's criteria are not acceptable. This means that traditional assessment methods do not sufficiently consider errors in measurement, so it has potential to over-estimate for performance of evaluation equipment. On the other hand, it was represented that the developed method should include variable factor such as errors in measurement and more precise compared to traditional assessment methods.

A Study on Partial Scoring in Text Based Program Evaluation (텍스트 기반 프로그램 평가에서 부분점수 구성에 관한 고찰)

  • Lee, JaeYoung;Kim, JaMee;Lee, WonGyu
    • The Journal of Korean Association of Computer Education
    • /
    • v.22 no.2
    • /
    • pp.29-38
    • /
    • 2019
  • The evaluation of programs related to SW development often only provides the right answer of the student's program. The purpose of this study was to provide the baseline data about the contents of the program evaluation support the teacher's class and which part should be considered important in partial scoring. To accomplish the goal, we had two months of Python lessons for 90 middle school students in free-semester and analyzed 1185 source codes collected during the lessons. Result of analysis, many students made mistakes about syntax errors and teachers considered logic errors as important. Based on the result, it is necessary to reduce the student's syntax errors and teachers need to evaluate student's program with considering the importance of logical aspects and necessary to devise a partial scoring. This study has significance about consideration of program evaluation from the perspective of learning support and evaluation.

Development of Management Guidelines and Procedure for Anthropometric Suitability Assessment: Control Room Design Factors in Nuclear Power Plants

  • Lee, Kyung-Sun;Lee, Yong-Hee
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.1
    • /
    • pp.29-43
    • /
    • 2015
  • Objective: The aim of this study is to develop management guidelines and a procedure for an anthropometric suitability assessment of the main control room (MCR) in nuclear power plants (NPPs). Background: The condition of the MCR should be suitable for the work crews in NPPs. The suitability of the MCR depends closely on the anthropometric dimensions and ergonomic factors of the users. In particular, the MCR workspace design in NPPs is important due to the close relationship with operating crews and their work failures. Many documents and criteria have recommended that anthropometry dimensions and their studies are one of the foremost processes of the MCR design in NPPs. If these factors are not properly considered, users can feel burdened about their work and the human errors that might occur. Method: The procedure for the anthropometric suitability assessment consists of 5 phases: 1) selection of the anthropometric suitability evaluation dimensions, 2) establishment of a measurement method according to the evaluation dimensions, 3) establishment of criteria for suitability evaluation dimensions, 4) establishment of rating scale and improvement methods according to the evaluation dimensions, and 5) assessment of the final grade for evaluation dimensions. The management guidelines for an anthropometric suitability assessment were completed using 10 factors: 1) director, 2) subject, 3) evaluation period, 4) measurement method and criteria, 5) selection of equipment, 6) measurement and evaluation, 7) suitability evaluation, 8) data sharing, 9) data storage, and 10) management according to the suitability grade. Results: We propose a set of 17 anthropometric dimensions for the size, cognition/perception action/behavior, and their relationships with human errors regarding the MCR design variables through a case study. The 17 selected dimensions are height, sitting height, eye height from floor, eye height above seat, arm length, functional reach, extended functional reach, radius reach, visual field, peripheral perception, hyperopia/myopia/astigmatism, color blindness, auditory acuity, finger dexterity, hand function, body angle, and manual muscle test. We proposed criteria on these 17 anthropometric dimensions for a suitability evaluation and suggested an improvement method according to the evaluation dimensions. Conclusion: The results of this study can improve the human performance of the crew in an MCR. These management guidelines and a procedure for an anthropometric suitability assessment will be able to prevent human errors due to inadequate anthropometric dimensions. Application: The proposed set of anthropometric dimensions can be integrated into a managerial index for the anthropometric suitability of the operating crews for more careful countermeasures to human errors in NPPs.