• Title/Summary/Keyword: evaluated cmc

Search Result 73, Processing Time 0.023 seconds

Chemoenzymatic Synthesis of Dual-responsive Amphiphilic Block Copolymers and Drug Release Studies

  • Chen, Peng;Li, Ya-Peng;Wang, Shu-Wei;Meng, Xin-Lei;Zhu, Ming;Wang, Jing-Yuan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1800-1808
    • /
    • 2013
  • Dual-responsive amphiphilic block copolymers were synthesized by combining enzymatic ring-opening polymerization (eROP) of ${\varepsilon}$-caprolactone (CL) and ATRP of N,N-dimethylamino-2-ethyl methacrylate (DMAEMA). The obtained block copolymers were characterized by gel permeation chromatography (GPC), $^1H$ NMR and FTIR-IR. The critical micelle concentration (CMC) of copolymer was determined by fluorescence spectra, it can be found that with hydrophilic block (PDMAEMA) increasing, CMC value of the polymer sample increased accordingly, and the CMC value was 0.012 mg/mL, 0.025 mg/mL and 0.037 mg/mL for $PCL_{50}$-b-$PDMAEMA_{68}$, $PCL_{50}$-b-$PDMAEMA_{89}$, $PCL_{50}$-b-$PDMAEMA_{112}$, $PCL_{50}$-b-$PDMAEMA_{89}$ was chosen as drug carrier to study in vitro release profile of anti-cancer drug (taxol). The temperature and pH dependence of the values of hydrodynamic diameter (Dh) of micelles, and self-assembly of the resulting block copolymers in water were evaluated by dynamic light scattering (DLS). The result showed that with the temperature increasing and pH decreasing, the Dh decreased. Drug-loaded nanoparticles were fabricated using paclitaxel as model. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) had been explored to study the morphology of the hollow micelles and the nanoparticles, revealing well-dispersed spheres with the average diameters both around 80 nm. In vitro release kinetics of paclitaxel from the nanoparticles was also investigated in different conditions (pH and temperature, etc.), revealing that the drug release was triggered by temperature changes upon the lower critical solution temperature (LCST) at pH 7.4, and at $37^{\circ}C$ by an increase of pH.

Enhanced Local Anesthetic Efficacy of Bioadhesive Ropivacaine Gels

  • Cho, Cheong-Weon;Choi, Jun-Shik;Shin, Sang-Chul
    • Biomolecules & Therapeutics
    • /
    • v.19 no.3
    • /
    • pp.357-363
    • /
    • 2011
  • In relieving local pains, ropivacaine has been widely used. In case of their application such as ointments and creams, it is difficult to expect their effects for a significant period of time, because they are easily removed by wetting, movement and contacting. Therefore, the new formulations that have suitable bioadhesion were needed to enhance local anesthetic effects. The effect of drug concentration and temperature on drug release was studied from the prepared 1.5% Carboxymethyl cellulose (CMC) (150MC) gels using synthetic cellulose membrane at $37{\pm}0.5^{\circ}C$. As the drug concentration and temperature increased, the drug release increased. A linear relationship was observed between the logarithm of the permeability coefficient and the reciprocal temperature. The activation energy of drug permeation was 3.16 kcal/mol for a 1.5% loading dose. To increase the skin permeation of ropivacaine from CMC gel, enhancers such as saturated and unsaturated fatty acids, pyrrolidones, propylene glycol derivatives, glycerides, and non-ionic surfactants were incorporated into the ropivacaine-CMC gels. Among the enhancers used, polyoxyethylene 2-oleyl ether showed the highest enhancing effects. For the efficacy study, the anesthetic action of the formulated ropivacaine gel containing an enhancer and vasoconstrictor was evaluated with the tail-flick analgesimeter. According to the rat tail-flick test, 1.5% drug gels containing polyoxyethylene 2-oleyl ether and tetrahydrozoline showed the best prolonged local analgesic effects. In conclusion, the enhanced local anesthetic gels containing penetration enhancer and vasoconstrictor could be developed using the bioadhesive polymer.

Isolation of Surfactant-Resistant Pseudomonads from the Estuarine Surface Microlayer

  • Louvado, Antonio;Coelho, Francisco J.R.C.;Domingues, Patricia;Santos, Ana L.;Gomes, Newton C.M.;Almeida, Adelaide;Cunha, Angela
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.283-291
    • /
    • 2012
  • Bioremediation efforts often rely on the application of surfactants to enhance hydrocarbon bioavailability. However, synthetic surfactants can sometimes be toxic to degrading microorganisms, thus reducing the clearance rate of the pollutant. Therefore, surfactant-resistant bacteria can be an important tool for bioremediation efforts of hydrophobic pollutants, circumventing the toxicity of synthetic surfactants that often delay microbial bioremediation of these contaminants. In this study, we screened a natural surfactant-rich compartment, the estuarine surface microlayer (SML), for cultivable surfactant-resistant bacteria using selective cultures of sodium dodecyl sulfate (SDS) and cetyl trimethylammonium bromide (CTAB). Resistance to surfactants was evaluated by colony counts in solid media amended with critical micelle concentrations (CMC) of either surfactants, in comparison with non-amended controls. Selective cultures for surfactant-resistant bacteria were prepared in mineral medium also containing CMC concentrations of either CTAB or SDS. The surfactantresistant isolates obtained were tested by PCR for the Pseudomonas genus marker gacA gene and for the naphthalene-dioxygenase-encoding gene ndo. Isolates were also screened for biosurfactant production by the atomized oil assay. A high proportion of culturable bacterioneuston was tolerant to CMC concentrations of SDS or CTAB. The gacA-targeted PCR revealed that 64% of the isolates were Pseudomonads. Biosurfactant production in solid medium was detected in 9.4% of tested isolates, all affiliated with genus Pseudomonas. This study shows that the SML is a potential source of surfactant-resistant and biosurfactant-producing bacteria in which Pseudomonads emerge as a relevant group.

Comparison of Multi-Satellite Sea Surface Temperatures and In-situ Temperatures from Ieodo Ocean Research Station (이어도 해양과학기지 관측 수온과 위성 해수면온도 합성장 자료와의 비교)

  • Woo, Hye-Jin;Park, Kyung-Ae;Choi, Do-Young;Byun, Do-Seung;Jeong, Kwang-Yeong;Lee, Eun-Il
    • Journal of the Korean earth science society
    • /
    • v.40 no.6
    • /
    • pp.613-623
    • /
    • 2019
  • Over the past decades, daily sea surface temperature (SST) composite data have been produced using periodically and extensively observed satellite SST data, and have been used for a variety of purposes, including climate change monitoring and oceanic and atmospheric forecasting. In this study, we evaluated the accuracy and analyzed the error characteristic of the SST composite data in the sea around the Korean Peninsula for optimal utilization in the regional seas. We evaluated the four types of multi-satellite SST composite data including OSTIA (Operational Sea Surface Temperature and Sea Ice Analysis), OISST (Optimum Interpolation Sea Surface Temperature), CMC (Canadian Meteorological Centre) SST, and MURSST (Multi-scale Ultra-high Resolution Sea Surface Temperature) collected from January 2016 to December 2016 by using in-situ temperature data measured from the Ieodo Ocean Research Station (IORS). Each SST composite data showed biases of the minimum of 0.12℃ (OISST) and the maximum of 0.55℃ (MURSST) and root mean square errors (RMSE) of the minimum of 0.77℃ (CMC SST) and the maximum of 0.96℃ (MURSST) for the in-situ temperature measurements from the IORS. Inter-comparison between the SST composite fields exhibited biases of -0.38-0.38℃ and RMSE of 0.55-0.82℃. The OSTIA and CMC SST data showed the smallest error while the OISST and MURSST data showed the most obvious error. The results of comparing time series by extracting the SST data at the closest point to the IORS showed that there was an apparent seasonal variation not only in the in-situ temperature from the IORS but also in all the SST composite data. In spring, however, SST composite data tended to be overestimated compared to the in-situ temperature observed from the IORS.

Effects of stabilizers on the texture of Frozen yogurt (안정제첨가가 Frozen yogurt 질감에 미치는 영향)

  • Shin, Weon-Sun;Yoon, Sun
    • Korean journal of food and cookery science
    • /
    • v.12 no.1
    • /
    • pp.20-26
    • /
    • 1996
  • The present study was attempted to investigate and to evaluate various hydrocolloids as a stabilizer in improving texture of the frozen yogurt. Four kinds of hydrocolloids used in this study were CMC (carboxymethyll cellulose), PGA(propylene glycol alginate), LMP(low methoxyl pectin), and the combination of LBG(locust bean gum) and GG(guar gum). The viscosity of frozen yogurt mixes did not show any significant differences among four samples at 5$^{\circ}C$. However, as the temperature increased up to 50$^{\circ}C$, theviscosity of frozen yogurt mixes containing CMC, LMP, PGA decreased drastically except frozen yogurt containing the combination of LBG+GG. The overrun of frozen yogurt containing each hydrocolloid gradually increased and reached to about 53, 50, 54, and 35%, respectively, after 40 min of operating ice cream freezer. As the result of sensory evaluation in the texture of frozen yogurt and melt-down quality, the sample containing LMP was described as the most coarce & icy, crumbly, and sand-like characters. On the other hand, PGA sample was evaluated as not being icy, crumbly, but being chewy and soft in texture. However, any significant differences among four samples were not shown in melt-down quality.

  • PDF

Physiology of Rhizoctonia solani AG2-2(IV), Trichoderma harzianum, and Chaetomium cochliodes, and their Utilization of Thatch-related Carbohydrate in Zoysia japonica (Rhizoctonia solani AG2-2(IV), Trichoderma harzianum and Chaetomium cochliodes의 생육생리와 이들 미생물들의 한국잔디 대취층 관련 탄소원 이용도 조사)

  • 박진희;강시용;김희규
    • Asian Journal of Turfgrass Science
    • /
    • v.12 no.4
    • /
    • pp.211-220
    • /
    • 1998
  • Cellulose-degrading fungi were idenfied as Rhizoctonia solani AG2-2(IV), T. harzianum and C. cochliodes. Rhizoctonia solani AG2-2(IV) grows better in the acidified media of pH 4 and 5 than pH 6 and 7. Mycelial growth of T. harzianum and C. cochliodes was also higher in pH 4 and 5 than in pH 6 and 7. In order to relate the above findings to nutrient utilization, mycelial growth of R. solani AG2-2(IV) are evaluated with various carbon sources. R. solani AG2-2(IV) grows well in the order of mannose, cellobiose, glucose, xylose and arabinose. However, mycelial dry weights of T. harzianum were 98.7, 78.0, 72.3, 43.7 and 32.3mg in glucose, mannose, cellobiose, xylose, and arabinose, respectively. Mycelial dry weight of C. cochilodes was 118, 65, 57, 49, and 16mg in mannose, cellobiose, xylose, glucose, and arabinose, respectively. Result of cellulase assay of R. solani AG2-2(IV) and soil fungi was reffered as, R. solani AG2-2(IV) produced more cellulase on CMC substrate than on CEL and secretes more enzyme in floated condition than in water-immersed condition. T. harzianum secreted less amount of cellulase than R. solani AG2-2 and C. cochliodes. T. harzianum produced no enzyme on CEL under water-immersed condition. C. cochliodes produced similar amounts of cellulase on either CMC or CEL under both water-immersed and floated condition.

  • PDF

Effect of surfactants on reductive degradation of Endosurfan I and II by ZVM (영가금속에 의한 Endosulfan I과 II의 환원분해에 미치는 계면활성제의 영향)

  • 김진영;김영훈;신원식;전영웅;송동익;최상준
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.187-190
    • /
    • 2002
  • Reductive dechlorination of endosulfans was studied with zero valent metals (ZVMs) and bimetals in aqueous batch reactors. The effect of surfactants was evaluated. Endosulfan was successfully dechlorinated with zero valent iron. However, a bimetal, palladium coated iron (Pd/Fe) showed a highly enhanced reactivity for both endosulfan I and II indicating palladium act as a dechlorination catalyst on the iron. The effect of surfactants on degradation with ZVM has been very controvertible. Variable concentration of a nonionic surfactant, Triton X-100 and an anionic surfactant, SDS were added into the reactor with ZVM. The reaction rates of endosulfan were increased with both surfactants. In the case of Triton X-100, the reaction rate was increased with the increasing surfactant concentration up to 400 mg/L. Addition of small amount of surfactant under the CMC, the reaction rate was increased. However, the enhancing effect was diminished when a higher concentration of surfactant (1,000 mg/L) was used. Current study implicate that the surfactant adsorbed on the metal surface might increase the surface concentration of endosulfan resulting in the increased reaction rate. However, partitioning of endosulfan into the micelle formed at the high concentration of surfactant diminish the enhancing effect by reducing the contact chance between target compound and the metal surface.

  • PDF

Oral Mucosal Adhesive Tablets of Omeprazole (오메프라졸 구강점막 부착정제에 관한 연구)

  • Jung, Jae-Hee;Choi, Han-Gon;Park, Sun-Joo;Ryu, Jei-Man;Yoon, Sung-June
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.2
    • /
    • pp.133-137
    • /
    • 1997
  • Buccal absorption test of omeprazole in human was performed to determine the permeability of the drug molecule through oral mucous membrane. Oral mucosal adhesive tablets of omeprazole were prepared by compressing the omeprazole with a mixture of sodium alginate and hydroxypropylmethyl cellulose (HPMC) as bioadhesive polymers, magnesium oxide (MgO) as a stabilizer and sodium carboxymethyl cellulose (Na CMC) or cros-carmellose sodium (Ac-Di-Sol) as disintegrants. The bioadhesive force, stability in saliva and release characteristics of the tablets were evaluated. Omeprazole was absorbed about 23% in 15 min through human buccal mucous membrane. Furthermore, omeprazole was stable in saliva for more than 8 hrs when MgO was added to the tablet as the amount of 2.5 fold of omeprazole. The release rate of omeprazole was increased with increasing the amount of sodium alginate in the tablet. From these results, it is suggested that tablets composed of [omeprazole/HPMC/sodium alginate/MgO/Ac-Di-Sol and/or Na CMC (20/6/24/50/10) (mg/tablet)] are potential candidate for buccal drug delivery system.

  • PDF

Surface-Active Properties of Sodium bis-Alkyl Sulfonatosuccinate (술폰화된 호박산 알킬에스테르류의 계면성)

  • Kim, Myeong-Soo;Jeong, Hwan-Kyeong;Yoon, In-Young;Nam, Ki-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.95-102
    • /
    • 2001
  • Recently, there has been considerably interested in the development to new functional gemini type anionic surfactant, sodium bis-n-alkyl sulfonatosuccinate, had been synthesized through the addition reaction of sodium bisulfite to bis-n-alkyl maleate, in which water was azeotropically distilled by adding benzene to the reaction system, gave a good yield. All the surface activities including krafft point, surface tension, emulsion power and foaming were measure and cmc was evaluated in dilute solution. This results showed a lower ability in $27{\sim}30dyne/cm$ than single-chain surfactant with $32{\sim}35dyne/cm$ to surface tension. Also its cmc value much smaller in $(6.5{\sim}10){\times}10^{-4}mca{\ell}/{\ell}$ than single-chain surfactant with $(40{\sim}45){\times}10^{-4}mca{\ell}/{\ell}$ concentration. In foaming ability and foam stability of gemini surfactant had especially a good ability in approximately $100{\sim}150ml$, and in emulsing power they exhibited a good emulsing phase and stability, and Krafft points were $0{\sim}10^{\circ}C$.

Optimizing Surfactant-Enhanced Solubilzation of LNAPL from Soil in Saturated Zone (포화지층내 저비중 비수용성 유기용매의 용해제거를 위한 계면활성제법의 최적 조작인자 도출)

  • 이재원;박규홍;박준범
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.153-164
    • /
    • 1999
  • The solubilization of BTEX was evaluated in aqueous surfactant solutions with and without several additives. Anionic surfactant(Sodium Dodecyl Sulfate, SDS) and nonionic surfactants (NEODOL(equation omitted)25-3 and $SOFTANOL\circledR-90$ were used as test surfactants. The effects of surfactant HLB(Hydrophile-Lipophile Balance) Number and hydrocarbon molar volume and polarity of BTEX on the MSR(Molar Solubilization Ratio), micelle-water partition coefficient of BTEX, and CMC(C,itical Micelle Concentration) were investigated. Optimizing treatment conditions applicable to enhanced solubilization was also studied by manupulating salinity or electrolyte control with additives of ethyl alcohol, hydrotrope, and electrolyte solution. The most effective surfactant for solubilization was found $SOFTANOL\circledR-90$, since HLB number of 13.6 is similar to those values of BTEX ranging between 11.4 and 12.2, which was also proved experimentally. Ethyl alchohol of 3% was the most effective additives in reducing CMC and improving solubilization among the conditions using SDS, NEODOL(equation omitted)25-3, and $SOFTANOL\circledR-90$ with three additives. The partitioning of BTEX between surfactant micelles and aqueous solutions was characterized by a mole fraction micelle-phase/aqueous phase partion coefficient, $K_m$. Values of log $K_m$. for BTEX compounds in surfactant solutions of this study range from 2.95 to 3.76(100mM SDS) and 2.95 to 3.49(117mM $SOFTANOL\circledR-90$. Log $K_m$ appears to be a linear function of log $K_{ow}$ for SDS and $SOFTANOL\circledR-90$. A knowledge of partitioning of BTEX in aqueous surfactant system can be a prerequisite for the understanding of the behavior of hydrophobic organic compounds in soil-water systems in which surfactants play a role in remediation of contaminated soil and facilitated transport.

  • PDF