• Title/Summary/Keyword: evacuation velocity

Search Result 52, Processing Time 0.015 seconds

Prediction of Loss of Life in Downstream due to Dam Break Flood (댐 붕괴 홍수로 인한 하류부 인명피해 예측)

  • Lee, Jae Young;Lee, Jong Seok;Kim, Ki Young
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.10
    • /
    • pp.879-889
    • /
    • 2014
  • In this study, to estimate loss of life considered flood characteristics using the relationship derived from analysis of historical dam break cases and the factors determining loss of life, the loss of life module applying in LIFESim and loss of life estimation by means of a mortality function were suggested and applicability for domestic dam watershed was examined. The flood characteristics, such as water depth, flow velocity and arrival time were simulated by FLDWAV model and flood risk area were predicted by using inundation depth. Based on this, the effects of warning, evacuation and shelter were considered to estimate the number of people exposed to the flood. In order to estimate fatality rates based on the exposed population, flood hazard zone is assigned to three different zones. Then, total fatality numbers were predicted after determining lethality or mortality function for each zone. In the future, the prediction of loss of life due to dam break floods will quantitatively evaluate flood risk and employ to establish flood mitigation measures at downstream applying probabilistic flood scenarios.

Smoke Control Experiment of a Very Deep Underground Station Where Platform Screens Doors are Installed - Analysis on Smoke Control Performance by Fans equipped in Tunnel (스크린도어가 설치된 대심도 지하역사의 제연 실험 - 터널 송풍기에 의한 제연의 효과 분석)

  • Park, Won-Hee;Kim, Chang-Yong;Cho, Youngmin
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.9
    • /
    • pp.721-736
    • /
    • 2019
  • In this paper, the behavior of the fire smoke due to the operation of the ventilation systems when the fire occurred in the underground station (6 basement floors) and the tunnel at the great depth was measured. Fire smoke was generated by using a smoke generator which realized heat buoyancy effect by using hot air blower. The two locations of the fire were selected on the platform and on the platform of the tunnel located outside the screen door. A ventilation mode is generally used in which smoke is exhausted through a vent hole provided in a platform when a platform fire occurs. The tests were performed by operating the exhaust through the ventilation holes of the tunnel part located at both ends of the platform. The smoke density and the wind speed/velocity were measured at various positions, and the videos were taken to analyze the movement and smoke of the smoke. In both cases for fire inside the platform and in the railway tunnel, due to the ventilation mode operation of the fan for the platform and the exhaust of the fans in the tunnel smoke were well exhausted and the smoke propagation to the area near the smoke zone was suppressed. The smoke-control mode, which is applied to both fans for the platform and fans for in the tunnel at both ends of the platform, can provide a safer evacuation environment to the passengers from the fire smoke when the platform fire or fire train stops.