• Title/Summary/Keyword: evacuation routes

Search Result 88, Processing Time 0.03 seconds

Prediction of Fire Spread and Real-Time Evacuation System according to Spatial Characteristics (공간적 특성에 따른 화재 확산 예측 및 실시간 대피 시스템 연구)

  • Nam-Gi An;Geon-Hui Lee;Min-jeong Kim;Kyu-Ho Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.617-623
    • /
    • 2023
  • Among the fire incidents in Korea over the past decade, building fires are the most common, and property and human casualties are the most common. However, the existing fire fighting system does not only inform the location of emergency exits and guide safe routes to help casualties evacuate smoothly. A system was proposed to help successful evacuation by distinguishing vertical and horizontal characteristics using spatial characteristics. In this study, an effective evacuation system was proposed by predicting fires using temperature detection sensors and smoke sensor values, and calculating the optimal evacuation path through the Dijkstra algorithm.

A Mobile Application for Navigating the Optimal Escape Route in Accidents and Emergency Situations (모바일 어플리케이션을 이용한 재난상황 발생 시 최적 대피경로 설정)

  • Cho, Sung Hyun;Joo, Ki Don;Kang, Hoon;Park, Kyo Shik;Shin, Dong Il
    • Korean Journal of Hazardous Materials
    • /
    • v.3 no.1
    • /
    • pp.28-36
    • /
    • 2015
  • In early 2011, the Fukushima nuclear power plant had greater damage due to earthquake in Japan, and the awareness of safety has increased. In particular, special response systems should be required to handle disaster situations in plant sites which are likely to occur for large disasters. In this study, a program is designed to set up optimum escape routes, by a smart phone application, when a disaster situation occurs. This program could get information of the cumulative damage from sensors and display the escape route of the smallest damage in real-time on the screen. Utilizing our application in real-time evacuation has advantage in reducing cumulative damage. The optimal evacuation route, focusing on horizontal path, is calculated based on getting the data of fire, detected radioactivity and hazardous gas. Thus, using our application provides information of optimal evacuation to people who even can not hear sensor alarms or do not know geography, without requiring additional costs except fixed sensors or server network deployment cost. As a result, being informed of real-time escape route, the user could behave rapidly with suitable response to individual situation resulting in improved evacuation than simply reacting to existing warning alarms.

A Study on Comparison and Shortening of Evacuation Time Required of University Library by Simulation (시뮬레이션을 통한 대학도서관의 피난 소요시간 비교 관한 연구)

  • An, Jeong-Pill;Kim, Gwang-Hee
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.16 no.2
    • /
    • pp.10-18
    • /
    • 2017
  • The University library is a reality where facilities can be a massive upset by the space of students to study space and book materials. Also, many print materials can cause fires quickly in fires, resulting in massive amounts of human casualties caused by many toxic gases. This study purpose is compares the time spent in the evacuation of the current state through the simulation, which seeks to derive a reasonable library of evacuation design, and improved inside the evacuation. As a result, the most obvious way to reduce the time required to evacuate is to diversify the evacuation routes and to disperse them. However, if the extension of the gate is not feasible, it is possible to reduce the time of escape by increasing the width of the gate and the width of the stair. If the results of this study are applied to new construction or remodeling of the library and prepare for fire evacuation, it will be a much safer library facility.

The Passenger Evacuation Simulation Using Fluent and EXODUS (Fluent 와 EXODUS를 이용한 승객피난 시뮬레이션)

  • Jang, Yong-Jun;Park, Won-Hee;Lee, Chang-Hyun;Jung, Woo-Sung
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1346-1353
    • /
    • 2007
  • The simulation analysis of fire-driven flow and passenger evacuation in Daegu subway station, Chung-Ang, have been performed. The first location of outbreak of fire is inside passenger car in the third basement in Chung-Ang station. The smoke flow in the second and third basement has been analyzed using FLUENT 6.2. The CO(carbon monoxide) and temperature distribution in the train units and station platform have been obtained and transferred to input data for evacuation simulation. The highest temperature in the train units was 1500K. For the simulation of passenger evacuation, EXODUS has been used for whole basements (level 1${\sim}$ level 3) in the station. Total number of people was assumed to be one thousand and 640 were placed inside train and 360 were placed outside train. In evacuation simulation, an average of 135 passengers were killed and an average time to evacuate takes 10min 19sec. The main evacuation routes used by passengers were investigated and the cause of death was identified by evacuation simulation.

  • PDF

Intelligent evacuation systems considering bottleneck (병목 현상을 고려한 지능형 대피유도 시스템)

  • Kim, Ryul;Joo, Yang-ick
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.69-70
    • /
    • 2017
  • As the industry develops, the size of buildings and ships are getting bigger and more complicated. In such a complex space, emergency evacuation systems are required because of the possibility of casualties when an accident situation occurs. However, because present systems are composed of basic devices, such as alarms, emergency exit signs, and announcement regarding the situation and inform only the least information to evacuees, evacuees are not able to judge objectively. To solve these problems, various evacuation algorithms have been proposed. However, these studies aim to search evacuation routes based on specific risk factors or to model the effects of bottlenecks in evacuation situations. Therefore, there is a limit to apply to real systems. Therefore, we propose algorithms to search the optimal evacuation route considering various risk factors such as fire and bottleneck in evacuation situations and to be applicable in actual situation in this paper. Performance evaluation using computer simulations showed that the proposed scheme is effective.

  • PDF

A Study on Improvement of Evacuation Safety Evaluation for Performance Based Design in Underground Parking Lot (지하주차장 성능위주설계의 피난안전성 평가 개선에 관한 연구)

  • Song, Young-Joo;Kong, II-Chean;Kim, Hak-Jung
    • Fire Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.85-97
    • /
    • 2019
  • Today, building constructions are becoming larger, higher, deeper, and complex to improve quality of human life and meet various needs. As a result, new design space for non - typically standardized space has been created, and targets for performance-based design are also becoming increased. An evacuation safety evaluation of performance-based design should be compared with ASET and RSET estimation so that the value of RSET does not exceed the value of ASET. However, there is a problem that it is difficult to secure the safety with using the performance-based design evaluation method currently in use, especially in case of the underground parking lot, because it has wide compartment area and various routes for evacuation. Therefore, in order to overcome these problems, this paper first investigates the simulation setting method of the performance-based design that is currently in use, and then conducts two fire simulations and three evacuation simulations for underground parking lots each time, so performs the evacuation safety evaluationin total six cases of situations. Here this paper analyzes the problem with comparative evaluation research and suggests the better solution for improved evacuation safety evaluation of performance-based design.

Study on the direction detection based on audible and non-audible signals using smart devices (스마트 디바이스를 활용한 가청, 비가청 신호 기반 피난방향 탐지 기법 연구)

  • Hyun, Byeongchun;Yun, Younguk;Park, Yohan;Kim, Youngok
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.1
    • /
    • pp.51-58
    • /
    • 2017
  • This paper proposes a direction estimation scheme with directional speaker and smart device for evacuation guidance. When there is worst disaster environment filled with smoke and noisy sound, evacuee can not get any information about evacuation routes. The proposed scheme can be used for detecting evacuation routes with audible and inaudible signal from directional speaker. At this point, evacuee can get evacuee guidance by using smartphone application that the proposed scheme is applied. The performance of the proposed scheme is evaluated by experiment with three different types of smart devices in large indoor environment. The purpose of experiment is to detect the direction of transmitted signal from directional speaker. Therefore, The experiment is conducted by analyzing the strength of transmitted signal by distance. The experimental results show that even if the smart device is located up to 20m away from the speaker, it is possible to detect the sending direction of the signal. We confirmed the possibility of the proposed technology in 8kHz and 20kHz signal detection by smart device.

A Study on Effective Fire Countermeasures for Facilities for the Elderly and Children (노유자시설의 효율적인 화재 대응방안에 관한 연구)

  • Hwang, Euy-Hong;Choi, Han-Bit;Choi, Doon-Mook
    • Fire Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.107-114
    • /
    • 2020
  • With the development of the national industry, the importance of the elderly and children such as the elderly, disabled, and children is recognized. Similarly, the number of facilities for the elderly and children is increasing. Fires at facilities for the elderly and children cause heavy casualties. In response to these events, it is essential to activate fire alarms promptly and accurately and to secure evacuation routes. In this study, the laws and statistics related to facilities for elderly and children were reviewed, and problems with legal terms-such as elderly, children, others, unwanted alarm of fire alarm systems, blind spots of fire compartment standards, securing evacuation routes, and absence of standards for life safety rescue organizations-were identified. As an improvement measure, the legal definitions of similar terms-such as elderly, children, unwanted alarm checklist, and establishment of standards for fire prevention compartment-and introduction of other terms-evacuation elevators, the establishment of standards for life-safety rescue organizations, and provision of flame retardation objects for evacuees-were proposed.

A study on the Application of Optimal Evacuation Route through Evacuation Simulation System in Case of Fire (화재발생 시 대피시뮬레이션 시스템을 통한 최적대피경로 적용에 관한 연구)

  • Kim, Daeill;Jeong, Juahn;Park, Sungchan;Go, Jooyeon;Yeom, Chunho
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.1
    • /
    • pp.96-110
    • /
    • 2020
  • Recently, due to global warming, it is easily exposed to various disasters such as fire, flood, and earthquake. In particular, large-scale disasters have continuously been occurring in crowded areas such as traditional markets, facilities for the elderly and children, and public facilities where various people stay. Purpose: This study aims to detect a fire occurred in crowded facilities early in the event to analyze and provide an optimal evacuation route using big data and advanced technology. Method: The researchers propose a new algorithm through context-aware 3D object model technology and A* algorithm optimization and propose a scenario-based optimal evacuation route selection technique. Result: Using the HPA* E algorithm, the evacuation simulation in the event of a fire was reproduced as a 3D model and the optimal evacuation route and evacuation time were calculated for each scenario. Conclusion: It is expected to reduce fatalities and injuries through the evacuation induction technique that enables evacuation of the building in the shortest path by analyzing in real-time via fire detection sensors that detects the temperature, flame, and smoke.

Flexible Intelligent Exit Sign Management of Cloud-Connected Buildings

  • Lee, Minwoo;Mariappan, Vinayagam;Lee, Junghoon;Cho, Juphil;Cha, Jaesang
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.58-63
    • /
    • 2017
  • Emergencies and disasters can happen any time without any warning, and things can change and escalate very quickly, and often it is swift and decisive actions that make all the difference. It is a responsibility of the building facility management to ensure that a proven evacuation plan in place to cover various worst scenario to handled automatically inside the facility. To mapping out optimal safe escape routes is a straightforward undertaking, but does not necessarily guarantee residents the highest level of protection. The emergency evacuation navigation approach is a state-of-the-art that designed to evacuate human livings during an emergencies based on real-time decisions using live sensory data with pre-defined optimum path finding algorithm. The poor decision on causalities and guidance may apparently end the evacuation process and cannot then be remedied. This paper propose a cloud connected emergency evacuation system model to react dynamically to changes in the environment in emergency for safest emergency evacuation using IoT based emergency exit sign system. In the previous researches shows that the performance of optimal routing algorithms for evacuation purposes are more sensitive to the initial distribution of evacuees, the occupancy levels, and the type and level of emergency situations. The heuristic-based evacuees routing algorithms have a problem with the choice of certain parameters which causes evacuation process in real-time. Therefore, this paper proposes an evacuee routing algorithm that optimizes evacuation by making using high computational power of cloud servers. The proposed algorithm is evaluated via a cloud-based simulator with different "simulated casualties" are then re-routed using a Dijkstra's algorithm to obtain new safe emergency evacuation paths against guiding evacuees with a predetermined routing algorithm for them to emergency exits. The performance of proposed approach can be iterated as long as corrective action is still possible and give safe evacuation paths and dynamically configure the emergency exit signs to react for real-time instantaneous safe evacuation guidance.