• Title/Summary/Keyword: eutectic

Search Result 737, Processing Time 0.034 seconds

Numerical Modeling on Microsegregation with Tip-undercooling in Weld Metal of Binary Alloys (과냉을 고려한 2원계합금 용접용융부의 미시편적 거동에 대한 수치해석 모델링)

  • 박종민;박준민;이창희
    • Journal of Welding and Joining
    • /
    • v.17 no.4
    • /
    • pp.60-68
    • /
    • 1999
  • The previously developed two dimensional model was modified in order to predict more accurately the degree of microsegregation and eutectic fraction on in weld metal whose solidification rate is very fast. The model employed the same assumptions with previous model but considered of a tip undercooling. The previously predicted microsegregation and eutectic fraction has the discrepancies between simulated and examined results in the weld metal solidification. The experiments for the weld metal solidification of 2024 A1 and Fe-Ni alloy were carried out in order to examine the reasonability and feasibility of this modified model. The concentration profile of the solute and eutectic fraction predicted by the simulation agreed well with those found from experimental works. According to the results, it was believed that the dendrite tip undercooling considered in the modified model be reasonable for predicting the degree of microsegregation more accurately in weld metla solidification. In the GTA welds, degree of dendrite-tip undercooling increases with increasing solidification rage(welding speed). This serves to increase the concentration of dendrite core and thus result in reducing the degree of segregation. And solid state diffusion(back diffusion) during solidification is very low in the weld metal solidification so that little additional homogenization of solute occurs during solidification. With consideration of tip undercooling this modified model can predict exactly degree of microsegregation and eutectic fraction from slow solidification(casting) to fast solidification(welding).

  • PDF

Micro-macroscopic analysis on the directional casting of a metal alloy (합금의 방향성 주조에 대한 미시적-거시적 해석)

  • Yu, Ho-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1303-1313
    • /
    • 1997
  • A micro-macroscopic analysis on the conduction-controlled directional casting of Al-Cu alloys is performed, in which emphases are placed on the microstructural features. In order to facilitate the solution procedure, an iterative micro-macroscopic coupling algorithm is developed. The predicted results show that the effect of finite back diffusion on the transient solidification process in comparison with the lever rule depends essentially on the initial concentration of an alloy. In the final casting, the eutectic fraction is distributed in an increasing-decreasing-increasing pattern, each mode of which is named the chill, interior and end zones. This nonuniformity per se suffices to justify the necessity of this work because it originates from the combined effects of finite back diffusion and cooling path-dependent nature of the eutectic formation. As the cooling rate is enhanced, not only the influence depths of boundaries narrow, but also the eutectic fractions in the chill and interior zones increase. In addition, it is revealed for the first time that the micro segregation band is formed in response to a sudden change in cooling rate during the directional casting. An increasing change creates an overshooting band in the eutectic fraction distribution, and vice versa.

Raman spectroscopy of eutectic melting between boride granule and stainless steel for sodium-cooled fast reactors

  • Hirofumi Fukai;Masahiro Furuya;Hidemasa Yamano
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.902-907
    • /
    • 2023
  • To understand the eutectic reaction mechanism and the relocation behavior of the core debris is indispensable for the safety assessment of core disruptive accidents (CDAs) in sodium-cooled fast reactors (SFRs). This paper addresses reaction products and their distribution of the eutectic melting/solidifying reaction of boron carbide (B4C) and stainless-steel (SS). The influence of the existence of carbon on the B4C-SS eutectic reaction was investigated by comparing the iron boride (FeB)-SS reaction by Raman spectroscopy with Multivariate Curve Resolution (MCR) analysis. The scanning electron microscopy with dispersive X-ray spectrometer was also used to investigate the elemental information of the pure metals such as Cr, Ni, and Fe. In the B4C-SS samples, a new layer was formed between B4C/SS interface, and the layer was confirmed that the formed layer corresponded to amorphous carbon (graphite) or FeB or Fe2B. In contrast, a new layer was not clearly formed between FeB and SS interface in the FeB-SS samples. All samples observed the Cr-rich domain and Fe and Ni-rich domain after the reaction. These domains might be formed during the solidifying process.

Development of New COG Technique Using Eutectic Bi-Sn and In-Ag Solder Bumps for Flat Panel Display

  • Kang, Un-Byoung;Kim, Young-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.270-274
    • /
    • 2002
  • We have developed a new COG technique using flip chip solder joining technology for excellent resolution and high quality LCD panels. Using the eutectic Bi-Sn and the eutectic In-Ag solder bumps of 50-80 ${\mu}m$ pitch sizes, a ultrafine interconnection between IC and glass substrate was successfully made at or below $160^{\circ}C$. The contact resistance and reliability of Bi-Sn solder joint showed the superiority over the conventional ACF bonding.

  • PDF

Molecular Dynamics Simulation of Nano-Deformation Behavior of the Grain-Size Controlled Rheology Material (분자동력학을 이용한 결정립 제어 레오로지 소재의 나노 변형거동 전산모사)

  • Kim J. W.;Youn S. W.;Kang C. G.
    • Transactions of Materials Processing
    • /
    • v.14 no.4 s.76
    • /
    • pp.319-326
    • /
    • 2005
  • In this study, the nano-deformation behavior of semi-solid Al-Si alloy was investigated using a molecular dynamics simulation as a part of the research on the surface crack behavior in thixoformed automobile parts. The microstructure of the grain-size controlled Al-Si alloy consists of primary and eutectic regions. In eutectic regions the crack initiation begins with initial fracture of the eutectic silicon particles and inside other intermetallic phases. Nano-deformation characteristics in the eutectic and primary phase of the grain-size controlled Al-Si alloy were investigated through the molecular dynamics simulation. The primary phase was assumed to be single crystal aluminum. It was shown that the vacancy occurred at the zone where silicon molecules were.

Mechanical Properties of Hyper-Eutectic Aluminum Alloys for Automobile Parts (자동차 부품용 과공정 알루미늄 합금의 기계적 특성)

  • Bae, Chul-Hong;Kim, Jong-Myung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.120-126
    • /
    • 2010
  • It was known that the excellent wear resistance of hyper eutectic aluminum alloy is based on the primary Si particles which are distributed in the base metal. When the primary Si volume fraction increases, the smaller size have excellent wear resistance characteristics. However, this trend always does not match. There is no investigation result based on the materials and methods for real using parts. In this study, using the automotive parts manufacturer currently in use hyper eutectic Al alloy tensile test specimen type sample was fabricated by 350Ton high pressure die-casting machine. Then, fluidity, tensile, impact and wear resistance properties were evaluated. If the casting quality, primary Si size, fraction and distribution are similar, mechanical properties and wear resistance are equivalent.

A Study on the Nano-Deformation Characteristics of Grain-Size Controlled Rheology Material Surfaces for Surface Crack Prediction (표면크랙 예측을 위한 결정립 제어 레오로지 소재 표면의 나노 변형특성에 관한 연구)

  • 윤성원;김현일;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.355-358
    • /
    • 2004
  • In this study, the deformation characteristics of grain-size controlled rheology materials surfaces were investigated as a part of the research on the surface crack prediction in semi-solid formed automobile components. The microstructure of rheology Al-Si alloys consists of primary and eutectic regions. In eutectic regions the crack initiation begins with initial fracture of the eutectic silicon particles and inside other intermetallic phases. Nano-deformation characteristics in the eutectic and primary region of semi-solid aluminum alloys (356 alloy and 319 alloy) were investigated through the nanoindentation/scratch experiments and the AFM observation.

  • PDF

Tensile Properties of Unidirectionally Solidified $Al-CuAl_2$ Eutectic Composite (일방향응고시킨 $Al-CuAl_2$ 공정복합재료의 인장성질)

  • Hong, Young-Hwan;Hong, Jong-Hwi
    • Journal of Korea Foundry Society
    • /
    • v.10 no.6
    • /
    • pp.503-508
    • /
    • 1990
  • The effect of interlamellar spacing on tensile behavior and fracture mode at high temperatures has been studied for unidirectionally solidified $Al-CuAl_2$ eutectic composite. The tensile properties at room temperature in $Al-CuAl_2$ eutectic composite improved as the interlamellar spacing decreased due to the constraint effects of closely spaced lamellae, while the opposite behavior was observed at high temperatures due to the annihilation of the constraint effects by phase boundary sliding. The $Al-CuAl_2$ eutectic composite exhibited brittle fracture mode below the temperature at which the reinforcing phase softened but ductile fracture mode above the temperature.

  • PDF

A Study on Deformation Behavior of the Grain-Size Controlled Rheology Material by Using Nanoindenter and AFM (나노인덴터와 원자력간 현미경을 이용한 결정립 제어 레오로지 소재의 변형거동에 관한 연구)

  • 윤성원;김정원;강충길
    • Transactions of Materials Processing
    • /
    • v.13 no.4
    • /
    • pp.374-381
    • /
    • 2004
  • In this study, the deformation behavior of semi-solid Al-Si alloy was investigated by nanoindenter as a part of the research on the surface crack behavior in thixoformed automobile component. The microstructure of semi-solid Al-Si alloy consists of primary and eutectic regions. In eutectic regions the crack initiation begins with initial fracture of the eutectic silicon particles and inside other intermetallic phases. Nano-deformation characteristics in the eutectic and primary phase of semi-solid aluminium alloy were investigated through the nano-indentation experiments and the AFM observation. In addition, mechanical properties of each region were investigated and compared with each other.

Effects of the Non-equilibrium Heat-treatment on Modification of Microstructures of Al-Si-Cu Cast Alloy (비평형 열처리에 의한 주조용 Al-Si-Cu합금 조직의 개량 효과)

  • Kim, Heon-Joo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.6
    • /
    • pp.391-397
    • /
    • 2000
  • Addition of Ca element and nonequilibrium heat treatment which promotes shape modification of eutectic Si and ${\beta}$ intermetallic compound were conducted to improve the mechanical properties of Al-Si-Cu alloy. Modification of eutectic Si and dissolution of needle-shape ${\beta}$ intermetallic compounds were possible by nonequilibrium heat treatment in which specimens were held at $505^{\circ}C$ for 2 hours in Al-Si-Cu alloy with Fe. Owing to the decrease in aspect ratio of eutectic Si by the heat treatment of the alloy with 0.33wt.% Fe, the increase in elongation was prominent to be more than double that in the as-cast specimen. Dissolution of needle-shape ${\beta}$ intermetallic compounds in the alloy with 0.85wt.% Fe led to the improvement of tensile strength as the length of ${\beta}$ compounds decreased to 50%.

  • PDF