• 제목/요약/키워드: euler number

검색결과 221건 처리시간 0.106초

관출구로부터 방출되는 펄스파에 미치는 관단면적의 영향 (Effect of Tube Area on the Impulse Wave Discharged from the Exit of Tube)

  • 신현동;이영기;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.544-549
    • /
    • 2003
  • When a shock wave arrives at an open end of tube, an impulse wave is discharged from the tube exit and causes serious noise and vibration problems. In the current study, the effect of the cross-sectional area of tube on the impulse wave is numerically investigated using a CFD method. The Harten-Yee's total variation diminishing(TVD) scheme is used to solve the axisymmetric, two-dimensional, unsteady, compressible Euler equations. With three different cross-sectional areas of tube, the Mach number of the incident shock wave $M_{s}$ is varied between 1.01 and 1.5. The results obtained show that the directivity and magnitude of impulse wave strongly depend upon the Mach number of incident shock wave and are influenced by the tube area. It is also known that the tube cross-sectional area significantly affects the magnitude of impulse wave at or near the tube axis.

  • PDF

조화분포이동하중을 받는 무한보에서의 음향방사 (Sound Radiation From Infinite Beams Under the Action of Harmonic Moving Line Forces)

  • 김병삼;이태근;홍동표
    • 소음진동
    • /
    • 제3권3호
    • /
    • pp.245-251
    • /
    • 1993
  • The problem of sound radiation from infinite elastic beams under the action on harmonic moving line forces is studies. The reaction due to fluid loading on the vibratory response of the beam is taken into account. The beam is assumed to occupy the plane z=0 and to be axially infinite. The beam material and elastic foundation are assumed to be lossless and Bernoulli-Euler beam theory including a tension force (T), damping coefficient (C) and stiffness of foundation $(\kappa_s)$ will be employed. The non-dimensional sound power is derived through integration of the surface intensity distribution over the entire beam. The expression for sound power is integrated numerically and the results examined as a function of Mach number (M), wavenumber ratio$(\gamma{)}$ and stiffness factor $(\Psi{)}$. Here, our purpose is to explain the response of sound power over a number of non-dimensional parameters describing tension, stiffness, damping and foundation stiffness.

  • PDF

Damage observability, localization and assessment based on eigenfrequencies and eigenvectors curvatures

  • Ciambella, Jacopo;Vestroni, Fabrizio;Vidoli, Stefano
    • Smart Structures and Systems
    • /
    • 제8권2호
    • /
    • pp.191-204
    • /
    • 2011
  • A technique for damage localization and assessment based on measurements of both eigenvectors curvatures and eigenfrequencies is proposed. The procedure is based on two successive steps: a model independent localization, based on changes of modal curvatures, and the solution of a one-dimensional minimization problem to evaluate damage intensity. The observability properties of damage parameters is discussed and, accordingly, a suitable change of coordinates is introduced. The proposed technique is illustrated with reference to a cantilever Euler beam endowed with a set of piezoelectric transducers. To assess the robustness of the algorithm, a parametric study of the identification errors with respect to the number of transducers and to the number of considered modal quantities is carried out with both clean and noise-corrupted data.

개인용 컴퓨터를 이용한 로보트 매니퓨레이터의 동적 방정식의 자동새성에 관한연구 (Automatic Generation of Dynamic Equations for Robotic Manipulators using Personal Computer)

  • 황창선;최영규;원태현;서종일
    • 대한전기학회논문지
    • /
    • 제37권4호
    • /
    • pp.226-231
    • /
    • 1988
  • A program is developed for generating the dynamic equations for the robotic manipulators using the symbolic language muSIMP/ MATH. The muSIMP/ MATH is a LISP-based computer. algebra package, devoted to the manipulation of algebraic expressions including numbers, variables, functions, and matrices. The muSIMP-MATH can operate on personal computer such as IBM-PC. The program is developed, based on the Lagrange-Euler formulation. This program is applicable to the manipulators with any number of degrees of freedom, and maximum number of degrees of freedom is set to be six in this program.

  • PDF

Thermal-magneto-mechanical stability analysis of single-walled carbon nanotube conveying pulsating viscous fluid

  • R. Selvamani;M. Mahaveer Sree Jayan;Marin Marin
    • Coupled systems mechanics
    • /
    • 제12권1호
    • /
    • pp.21-40
    • /
    • 2023
  • In thisstudy, the vibration problem ofthermo elastic carbon nanotubes conveying pulsating viscous nano fluid subjected to a longitudinal magnetic field is investigated via Euler-Bernoulli beam model. The controlling partial differential equation of motion is arrived by adopting Eringen's non local theory. The instability domain and pulsation frequency of the CNT is obtained through the Galerkin's method. The numerical evaluation of thisstudy is devised by Haar wavelet method (HWM). Then, the proposed model is validated by analyzing the critical buckling load computed in presentstudy with the literature. Finally, the numerical calculation ofsystem parameters are shown as dispersion graphs and tables over non local parameter, magnetic flux, temperature difference, Knudsen number and viscous parameter.

Similarity evaluation of the pump simulation loop in STELLA-2 for conservation of mechanical sodium pump characteristics

  • Jung Yoon ;Jewhan Lee ;Jaehyuk Eoh;Hyungmo Kim ;Dong Eok Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.353-363
    • /
    • 2023
  • The STELLA-2 is a large-scale sodium thermal-hydraulic integral effect test facility and supports the development of PGSFR. The facility adopted Pump Simulation Loop System (PSLS) concept for the mechanical sodium pump in the reference reactor to control and to measure the primary sodium flow. Since the component (mechanical pump) is replaced by the loop, it is very important to evaluate the similarity between the pump and the loop. In this paper, to simulate the characteristic of the mechanical sodium pump, the pressure loss along the various options of the loop was evaluated and the comprehensive validity of each design options was analyzed. Using the similarity criteria based on the Richardson number and Euler number conservation, the PSLS design was finalized and the result was within the acceptable error range. Finally, the result of this study was used for construction of the overall facility, STELLA-2.

정익과 동익의 상호작용에 의한 비정상 천이 경계층 유동의 수치해석에 관한 연구 1

  • 강동진
    • 대한기계학회논문집B
    • /
    • 제22권6호
    • /
    • pp.757-770
    • /
    • 1998
  • A Navier-Stokes code with a low Reynolds number k-.epsilon. turbulence model was tested to investigate its predictability for the unsteady transitional boundary layer flow due to rotor-stator interaction. A preliminary calculation with three different numbers of time steps 300, 600, and 1000 for a rotor wake passing period was carried out to see the effects of time steps on the unsteady flow and pressure fields due to rotor-stator interaction. Numerical solutions showed that unsteady pressure was much more sensitive to the number of time steps and over 600 time steps should be used to get a numerical solution independent of the number of time steps for a rotor wake passing period. The original low Reynolds number k-.epsilon. turbulence model showed very poor prediction of the unsteady transitional boundary layer flow due to rotor-stator interaction. This was due to the excessive production of turbulent kinetic energy near the leading edge. A modification suggested by Launder was incorporated and the modified model captured well the wake induced transitional strip. Present solutions also showed improved prediction over previous Euler/boundary layer solution in terms of the onset of unsteady transition and its extent.

Derivation of the Extended Elastic Stiffness Formula of the Holddown Spring Assembly Comprised of Several Leaves

  • Song, Kee-Nam;Kang, H.S.;Yoon, K.H.
    • Nuclear Engineering and Technology
    • /
    • 제31권3호
    • /
    • pp.328-334
    • /
    • 1999
  • Based on the Euler beam theory and the elastic strain energy method, the elastic stiffness formula of the holddown spring assembly consisting of several leaves was previously derived. Even though the previous formula was known to be useful to estimate the elastic stiffness of the holddown spring assembly, recently it was reported that the elastic stiffness from the previous formula deviated greatly from the test results as the number of leaves was increased. The objective of this study is to extend the previous formula in order to resolve such an increasing deviation when increasing the number of leaves. Additionally, considering the friction forces acting on the interfaces between the leaves, we obtained an extended elastic stiffness formula. The characteristic test and the elastic stiffness analysis on the various kinds of specimens of the holddown spring assembly have been carried out; the validity of the extended formula has been verified by the comparison of their results. As a result of comparisons, it is found that the extended formula is able to evaluate the elastic stiffness of the holddown spring assembly within the maximum error range of + 12%, irrespective of the number of the leaves.

  • PDF

Dynamic stiffness based computation of response for framed machine foundations

  • Lakshmanan, N.;Gopalakrishnan, N.;Rama Rao, G.V.;Sathish kumar, K.
    • Geomechanics and Engineering
    • /
    • 제1권2호
    • /
    • pp.121-142
    • /
    • 2009
  • The paper deals with the applications of spectral finite element method to the dynamic analysis of framed foundations supporting high speed machines. Comparative performance of approximate dynamic stiffness methods formulated using static stiffness and lumped or consistent or average mass matrices with the exact spectral finite element for a three dimensional Euler-Bernoulli beam element is presented. The convergence of response computed using mode superposition method with the appropriate dynamic stiffness method as the number of modes increase is illustrated. Frequency proportional discretisation level required for mode superposition and approximate dynamic stiffness methods is outlined. It is reiterated that the results of exact dynamic stiffness method are invariant with reference to the discretisation level. The Eigen-frequencies of the system are evaluated using William-Wittrick algorithm and Sturm number generation in the $LDL^T$ decomposition of the real part of the dynamic stiffness matrix, as they cannot be explicitly evaluated. Major's method for dynamic analysis of machine supporting structures is modified and the plane frames are replaced with springs of exact dynamic stiffness and dynamically flexible longitudinal frames. Results of the analysis are compared with exact values. The possible simplifications that could be introduced for a typical machine induced excitation on a framed structure are illustrated and the developed program is modified to account for dynamic constraint equations with a master slave degree of freedom (DOF) option.

The new Weakness of RSA and The Algorithm to Solve this Problem

  • Somsuk, Kritsanapong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권9호
    • /
    • pp.3841-3857
    • /
    • 2020
  • RSA is one of the best well-known public key cryptosystems. This methodology is widely used at present because there is not any algorithm which can break this system that has all strong parameters within polynomial time. However, it may be easily broken when at least one parameter is weak. In fact, many weak parameters are already found and are solved by some algorithms. Some examples of weak parameters consist of a small private key, a large private key, a small prime factor and a small result of the difference between two prime factors. In this paper, the new weakness of RSA is proposed. Assuming Euler's totient value, Φ (n), can be rewritten as Φ (n) = ad + b, where d is the private key and a, b ∈ ℤ, if a divides both of Φ (n) and b and the new exponent for the decryption equation is a small integer, this condition is assigned as the new weakness for breaking RSA. Firstly, the specific algorithm which is created for this weakness directly is proposed. Secondly, two equations are presented to find a, b and d. In fact, one of two equations must be implemented to find a and b at first. After that, the other equation is chosen to find d. The experimental results show that if this weakness has happened and the new exponent is small, original plaintext, m, will be recovered very fast. Furthermore, number of steps to recover d are very small when a is large. However, if a is too large, d may not be recovered because m which must be always written as m = ha is higher than modulus.