• 제목/요약/키워드: eugenol

검색결과 249건 처리시간 0.031초

정향(Eugenia caryophyllata Thunb.) Eugenol 및 그 유도체의 항산화 및 항염증활성 (Antioxidant and Anti-Inflammatory Activities of Eugenol and Its Derivatives from Clove (Eugenia caryophyllata Thunb.))

  • 임현희;김은옥;서미자;최상원
    • 한국식품영양과학회지
    • /
    • 제40권10호
    • /
    • pp.1361-1370
    • /
    • 2011
  • 본 연구는 한방스킨의 원료로 널리 사용되고 있는 8가지 생약의 휘발성증류추출액 중 항산화 및 항염증활성이 가장 강한 정향의 증류추출액으로부터 주된 향기성분을 SDE법으로 추출한 후 GC-MS로 확인하였으며, 주된 향기성분인 eugenol과 그 유도체를 합성한 후 항산화 및 항염증활성을 측정하고 비교하였으며, 아울러 HPLC를 이용하여 정향의 eugenol 및 그 유도체를 정량분석 하였다. 8가지 생약의 휘발성증류추출액 중 정향의 증류추출액이 가장 강한 항산화활성($IC_{50}$=8.85 ${\mu}g/mL$) 및 COX-2 저해활성(10 ${\mu}g/mL$ 농도에서 저해율은 58.15%)을 나타내었으며, 반면 15-LOX 저해 활성(25 ${\mu}g/mL$ 농도에서 저해율은 86.15%)은 당귀 다음으로 가장 높았다. 정향 증류추출액의 휘발성 향기성분을 SDE법으로 추출한 후 GC-MS를 이용하여 분석한 결과, eugenol, trans-caryophyllene 및 acetyl eugenol을 확인하였다. 한편, eugenol 및 그 유도체(methyl eugenol 및 acetyl eugenol)의 항산화 및 항염증 활성을 측정한 결과, eugenol($IC_{50}$=5.99 ${\mu}g/mL$)이 가장 높은 항산화활성을 나타낸 반면, methyl eugenol 및 acetyl eugenol은 거의 활성을 나타내지 않았다. COX-2의 경우 20 ${\mu}g/mL$ 농도에서 eugenol(85.35%)이 가장 강한 저해활성을 나타낸 반면, 15-LOX는 20 ${\mu}g/mL$ 농도에서 methyl eugenol(83.29%)이 가장 높은 저해활성을 나타내었다. 정향 에탄올추출물의 eugenol 및 유도체의 함량을 HPLC로 분석한 결과, eugenol 및 acetyl eugenol이 각각 6.95%, 1.85% 함유되어 있었으며 methyl eugenol은 검출되지 않았다. 이와 같이 정향 유래의 eugenol 및 그 유도체는 안전성이 문제시되고 있는 합성항산화제 및 항염증제를 대체할 수 있는 천연 유래의 항산화 및 항염증물질로서 잠재적 가치가 있어 향후 기능성식품, 화장품 및 의약품 소재로 널리 사용될 수 있을 것으로 생각된다.

Chemical Composition and Acaricidal Activities of Constituents Derived from Eugenia caryophyllata Leaf Oils

  • Sung, Bo-Kyung;Lee, Hoi-Seon
    • Food Science and Biotechnology
    • /
    • 제14권1호
    • /
    • pp.73-76
    • /
    • 2005
  • The acaricidal activities of 12 commercial constituents derived from Eugenia caryophyllata leaf oils against Dermatophagoides farinae, D. pteronyssinus and Tyrophagus putrescentiae adults were examined using an impregnated fabric disk application and compared with that of the commercial benzyl benzoate as synthetic acaricide. On the basis of $LD_{50}$ values, the most toxic compound was methyl eugenol ($4.13\;{\mu}g/cm^2$), followed by methyl isoeugenol ($4.19\;{\mu}g/cm^2$), isoeugenol ($4.29\;{\mu}g/cm^2$), eugenol ($4.94\;{\mu}g/cm^2$), and acetyl eugenol ($13.91\;{\mu}g/cm^2$) against D. farinae. In the case of D. pteronyssinus, isoeugenol ($2.93\;{\mu}g/cm^2$) was the most toxic, followed by methyl isoeugenol ($3.28\;{\mu}g/cm^2$), methyl eugenol ($3.87\;{\mu}g/cm^2$), eugenol ($3.92\;{\mu}g/cm^2$), and acetyl eugenol ($7.21\;{\mu}g/cm^2$). These results suggest that D. pteronyssinus may be controlled more effectively by the application of eugenol congeners than D. farinae. In comparison with synthetic acaricides, the acaricidal activities of eugenol, isoeugenol, methyl eugenol, and methyl isoeugenol were about 1.9-2.2 times more toxic than benzyl benzoate. Furthermore, the most toxic constituent against T. putrescentiae was exhibited on eugenol ($10.11\;{\mu}g/cm^2$), followed by methyl eugenol ($38.67\;{\mu}g/cm^2$) and acetyl eugenol ($70.09\;{\mu}g/cm^2$), but no activity was observed for isoeugenol and methyl isoeugenol. The results suggested that eugenol congeners may be useful as a new source for selective control of house dust mites and stored food mites.

유진놀을 이용한 수산화아파타이트 성형체에 관한 연구 (Study on the Hydroxyapatite Body Using with the Eugenol)

  • 류수착
    • 한국재료학회지
    • /
    • 제14권6호
    • /
    • pp.375-378
    • /
    • 2004
  • The samples were prepared with hydroxyapatite(HAp) powder and eugenol (Eugenol/HAp = 15, 20, 25, 30wt%). The samples were dried at room temperature. The higher mechanical properties was observed in HAp sample with 25wt% Eugenol. The average compressive and bending strength in HAp with 25wt% Eugenol are 542 kgf/$\textrm{mm}^2$ and 366 kgf/$\textrm{mm}^2$ respectively. This strength is higher compare to that of the cortical bone.

Toxicological Studies on the Essential Oil of Eugenia caryophyllata Buds

  • Park, Hee-Juhn
    • Natural Product Sciences
    • /
    • 제12권2호
    • /
    • pp.94-100
    • /
    • 2006
  • The essential oil (EC-oil) obtained from the buds of Eugenia caryophyllata (Myrtaceae) was examined for its free radical-scavenging activity, cytotoxicity, and in vivo toxicity. To find the xenobiotic properties of EC-oil, serum thiobarbituric acid reactive substances (TBARS) level and hepatic drug-metabolizing enzyme activities were measured. It was found that EC-oil displayed xenobiotic properties like bromobenzene. The cytotoxicities of eugenol and of the EC-oil were greatly attenuated by the sulfhydryl-containing N-acetyl-L-cysteine (NAC), suggesting that eugenol was susceptible to nucleophilic sulfhydryl. In addition, eugenol also showed potent free radical-scavenging activity in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. Moreover, methyleugenol considerably exhibited less cytotoxicity and less potent free radical-scavenging activity than eugenol, and the cell viability of the methyleugenol was more increased with NAC treatment than the eugenol. These results indicate that the phenolic OH in eugenol may play a crucial role in both cytotoxicity and free radical-scavenging activity. The fashion on oxidative stress and hepatic drug-metabolizing enzyme activities of eugenol resembled those of bromobenznene.

치수에서 Eugenol이 iCGRP(immunoreactive calcitonin gene-related peptide)의 분비 조절에 미치는 영향 (EFFECT OF EUGENOL ON REGULATION OF iCGRP RELEASE FROM THE BOVINE DENTAL PULP)

  • 오원만;최남기;김선헌
    • Restorative Dentistry and Endodontics
    • /
    • 제24권1호
    • /
    • pp.180-186
    • /
    • 1999
  • Eugenol has been reported to reduce odontogenic pain and is known to have a structure similar to capsaicin, a potent stimulant of certain nociceptors. We have hypothesized that the analgesic effect of eugenol may be due, in part, to inhibition of capsaicin-sensitive nociceptors. To test this hypothesis, we evaluate whether eugenol inhibits capsaicin-sensitive release of immunoreactive calcitonin generated peptide(iCGRP) from bovine dental pulp. Freshly extracted bovine incisors were transported to the lab. on ice, Spilitted and pulp tissue was removed. The tissue was chopped into 200${\mu}m$ slices. Dental pulp was superfused(340 ${\mu}l/min$) in vitro with oxygenated Kreb's buffer. Eugenol and vehicle(0.02% 2-hydroxyl-${\beta}$-cyclodextrin) were administered prior to stimulation of pulp with capsaicin and iCGRP was measured by RIA. The results were as follows: 1. Administration of eugenol has no effect on basal release of iCGRP. 2. In the vehicle treated group, capsaicin evoked a 2.5-fold increase over basal iCGRP levels. 3. Administration of eugenol(600 ${\mu}M$) reduced capsaicin evoked release of iCGRP by more than 40%(153.4${\pm}$41.1% vs 258.9${\pm}$21.7%). 4. 2-hydroxylpropyl-${\beta}$-cyclodextrin of less than 0.02% is found to be an effective vehicle to dissolve eugenol without evoking iCGRP release from dental bovine pulp. These data indicate that eugenol inhibits pulpal capsaicin-sensitive fibers and suggest that intracanal medicament of eugenol may relieve pain, in part, by this mechanism.

  • PDF

Induction of Apoptosis by Eugenol and Capsaicin in Human Gastric Cancer AGS Cells - Elucidating the Role of p53

  • Sarkar, Arnab;Bhattacharjee, Shamee;Mandal, Deba Prasad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권15호
    • /
    • pp.6753-6759
    • /
    • 2015
  • Background: Loss of function of the p53 gene is implicated in defective apoptotic responses of tumors to chemotherapy. Although the pro-apoptotic roles of eugenol and capsaicin have been amply reported, their dependence on p53 for apoptosis induction in gastric cancer cells is not well elucidated. The aim of the study was to elucidate the role of p53 in the induction of apoptosis by eugenol and capsaicin in a human gastric cancer cell line, AGS. Materials and Methods: AGS cells were incubated with or without various concentrations of capsaicin and eugenol for 12 hrs, in the presence and absence of p53 siRNA. Cell cycling, annexin V and expression of apoptosis related proteins Bax, Bcl-2 ratio, p21, cyt c-caspase-9 association, caspase-3 and caspase-8 were studied. Results: In the presence of p53, capsaicin was a more potent pro-apoptotic agent than eugenol. However, silencing of p53 significantly abrogated apoptosis induced by capsaicin but not that by eugenol. Western blot analysis of pro-apoptotic markers revealed that as opposed to capsaicin, eugenol could induce caspase-8 and caspase-3 even in the absence of p53. Conclusions: Unlike capsaicin, eugenol could induce apoptosis both in presence and absence of functional p53. Agents which can induce apoptosis irrespective of the cellular p53 status have immense scope for development as potential anticancer agents.

The mechanism of apoptosis induced by eugenol in human osteosarcoma cells

  • Shin, Sang-Hun;Park, Jae-Hyun;Kim, Gyoo-Cheon;Park, Bong-Soo;Gil, Young-Gi;Kim, Chul-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제33권1호
    • /
    • pp.20-27
    • /
    • 2007
  • Eugenol is commonly used in dentistry for the sedation of toothache, pulpitis, and dental hyperalgesia. This study was performed to investigate the apoptotic effect of eugenol to human osteosarcoma (HOS) cells and the potential use of this compound in osteosarcoma cells. Eugenol showed the apoptotic effect in HOS cells in dose- and time-dependent manner. Fragmentation and condensation of DNA were showed by TUNEL assay, Hemacolor stain and Hoechst stain. In the DNA electrophoresis analysis, cells showed DNA degradation characteristic of apoptosis with a ladder pattern of DNA fragments. Apoptosis-related factors were analyzed by western blotting. Cells treated with eugenol showed caspase-3, PARP, lamin A and DFF-45 cleavage. Eugenol treatment induced caspase-3 cleavage and activation. Cleavages of PARP, DFF-45 and lamin A were accompanied with activation of caspase triggered by eugenol in HOS cells. Though this study needs more investigations, these results suggest that eugenol induce apoptosis via caspase dependent pathway in HOS cells and eugenol may constitute a potential antitumor compound against osteosarcoma cells.

Eugenol과 1α,25-dihydroxyvitamin D3의 병합처리에 의한 HL-60 세포의 분화 유도 (Cooperative Induction of HL-60 Cell Differentiation by Combined Treatment with Eugenol and 1α,25-Dihydroxyvitamin D3)

  • 오미경;박선주;김남훈;조진경;진종률;김인숙
    • 생명과학회지
    • /
    • 제17권9호통권89호
    • /
    • pp.1191-1196
    • /
    • 2007
  • Eugenol은 여러가지 향신료에 있는 필수 오일의 주요 성분으로서 악성 종양 세포의 성장을 저해하고 사멸을 유도한다고 보고되었다. 본 연구에서는 eugenol이 세포 분화 유도에 관여하는지를 조사하기 위하여 HL-60 전골 수성 백혈병 세포의 분화에 미치는 eugenol의 효과를 연구하였다. HL-60 세포에 eugenol (150 ${\mu}M$)을 가했을 때 세포성장이 저해되었으며 $1,25(OH)_{2}$ vit $D_{3}$ (3 nM)와 병합처리시에는 더 큰 저해효과를 보였다. 이 때, eugenol은 $1,25(OH)_{2}$ vit $D_{3}$에 의해 유도되는 세포주기의 $G_{0}/G_{1}$단계 정지를 더욱 증가시킴을 알 수 있었다. 또한, eugenol과 $1,25(OH)_{2}$ vit $D_{3}$를 병합처리 하였을 때에는 $G_{0}/G_{1}$단계의 정지와 관련된 세포주기 조절인자인 p27 level를 상호 협동적으로 증가시켰을 뿐만 아니라 cyclin A, cdk2, cdk4 level를 감소시켰다. 또한 유세포분석실험을 통하여, CD14 (단핵세포 표지 인자)의 발현이 eugenol과 $1,25(OH)_{2}$ vit $D_{3}$를 병합처리한 세포에서 단독처리시보다 더 증가함을 알 수 있었다. 이러한 결과들은 eugenol이 $1,25(OH)_{2}$ vit $D_{3}$와 상호협동적으로 작용하여 저농도의 $1,25(OH)_{2}$ vit $D_{3}$에 의해 자극된 세포 분화 신호를 더욱 더 증대 시킴을 나타낸다. 이러한 eugenol에 의한 세포 분화 유도 작용은 암의 화학적예방 효과에 유용하게 응용될 수 있을 것으로 기대된다.

백서 척수에서 Capsaicin과 Eugenol이 iCGRP (immunoreactive calcitonin gene-related peptide) 분비 조절에 미치는 영향. (EFFECT OF CAPSAICIN AND EUGENOL ON ICGRP (IMMUNOREACTIVE CALCITONIN GENE-RELATED PEPTIDE) RELEASE FROM RAT LUMBAR SPINAL CORD.)

  • 오원만;김원재;최남기;박상원;황인남;김선헌
    • Restorative Dentistry and Endodontics
    • /
    • 제26권5호
    • /
    • pp.436-442
    • /
    • 2001
  • Neuropeptide such as calcitonin gene-related peptide and substance P may mediate neurogenic inflammation, but little is known about the regulation of neuropeptide release from rat spinal cord. Eugenol has been reported to reduce odontogenic pain and is known to have a structure similar to capsaicin, a potent stimulant of certain nociceptors. This study was done to examine the effect of capsaicin and eugenol on immunoreactive calcitonin gene-related peptide (iCGRP) release from rat spinal cord and whether eugenol regulates capsaicin-sensitive release of iCCRP or it evokes capsaicin-sensitive release of iCGRP. The dor-sal half of rat lumbar spinal cord was chopped into 200$\mu$m slices. They were superfused (500$\mu$l/min) in vitro with an oxygenated Kreb's buffer. The EC$_{50}$ of capsaicin on iCGRP release was measured. Eugenol (600$\mu$M and 1.2mM) and vehicle (0.02% 2-hydroxyl-$\beta$-cyclodextrin) were administered prior to stimulation of rat lumbar spinal cord with capsaicin. The amount of iCGRP release from rat lumbar spinal cord was measured by radioimmunoassay. The results were as follows : 1. iCGRP release from rat lumbar spinal cord was dependent on concentration of capsaicin. The EC$_{50}$ of capsaicin on iCGRP release was 3$\mu$M. 2. In the vehicle treated group, capsaicin (3$\mu$M) evoked a 14-fold increase over basal iCGRP level. 3. Administration of 600$\mu$M and 1.2mM eugenol evoked a 2.2-fold increase and a 2.3-fold increase over basal iCGRP level respectively. 4. Administration of 600$\mu$M and 1.2mM eugenol increased capsaicin evoked release of iCGRP by more than 50%. These results indicate that eugenol evoke CGRP release from central nervous system and potentiate the pain-inducing action of capsaicin on it.

  • PDF

S Phase Cell Cycle Arrest and Apoptosis is Induced by Eugenol in G361 Human Melanoma Cells

  • Rachoi, Byul-Bo;Shin, Sang-Hun;Kim, Uk-Kyu;Hong, Jin-Woo;Kim, Gyoo-Cheon
    • International Journal of Oral Biology
    • /
    • 제36권3호
    • /
    • pp.129-134
    • /
    • 2011
  • Eugenol is an essential oil found in cloves and cinnamon that is used widely in perfumes. However, the significant anesthetic and sedative effects of this compound have led to its use also in dental procedures. Recently, it was reported that eugenol induces apoptosis in several cancer cell types but the mechanism underlying this effect has remained unknown. In our current study, we examined whether the cytotoxic effects of eugenol upon human melanoma G361 cells are associated with cell cycle arrest and apoptosis using a range of methods including an XTT assay, Hoechst staining, immunocyto-chemistry, western blotting and flow cytometry. Eugenol treatment was found to decrease the viability of the G361 cells in both a time- and dose-dependent manner. The induction of apoptosis in eugenol-treated G361 cells was confirmed by the appearance of nuclear condensation, the release of both cytochrome c and AIF into the cytosol, the cleavage of PARP and DFF45, and the downregulation of procaspase-3 and -9. With regard to cell cycle arrest, a time-dependent decrease in cyclin A, cyclin D3, cyclin E, cdk2, cdk4, and cdc2 expression was observed in the cells after eugenol treatment. Flow cytometry using a FACScan further demonstrated that eugenol induces a cell cycle arrest at S phase. Our results thus suggest that the inhibition of G361 cell proliferation by eugenol is the result of an apoptotic response and an S phase arrest that is linked to the decreased expression of key cell cycle-related molecules.