• Title/Summary/Keyword: ethylene-

Search Result 3,596, Processing Time 0.028 seconds

Inhibitory Effect of Mannose on Auxin-Induced Ethylene Production in Corn (Zea mays L.) Coleoptiles (옥수수 자엽초에서 오옥신 유발 에틸렌 생성에 대한 Mannose의 억제작용)

  • 조성혜
    • Journal of Plant Biology
    • /
    • v.33 no.4
    • /
    • pp.309-314
    • /
    • 1990
  • Effect of mannose on auxin-induced ethylene production in corn (Zea mays L.) coleoptiles was studied. Auxin induced ethylene production decreased in proportion to mannose concentrations. The inhibitory effect of mannose appeared after 2 h of incubation. Ethylene production was significantly depressed by mannose at high concentration (10-5M-10-4M) of indole acetic acid (IAA), but not at low concentrations (10-8M-10-6M). The inhibition of auxin-induced ethylene production by mannose was specific, since other sugars such as galactose, glucose, sucrose and mannitol did not have an inhibitory effect. In an effort to elucidate mechanisms of mannose the effect on the auxin induced ethylene production, effect of the sugar on ACC synthase activity and ACC induced ethylene production was studied. Mannose failed to inhibit ACC mediated ethylene production, but decreased both the ACC content and ACC synthase activity in the tissue. These results suggest that the inhibitory effect of mannose on auxin induced ethylene production results from suppression of auxin induction of ACC synthase.

  • PDF

A Study on Electrochemical Properties of Acrylate-based Gel Polymer Electrolyte with Ethylene Oxide Group (Ethylene Oxide기를 갖는 Acrylate계 Gel Polymer Electrolyte의 전기화학적 특성에 관한 연구)

  • Kim, Hyun-Soo;Shin, Jung-Han;Moon, Seong-In;Oh, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.6
    • /
    • pp.608-614
    • /
    • 2004
  • The gel polymer electrolyte was prepared by radical polymerization using tetra(ethylene glycol) diacrylate and tri(ethylene glycol) dimethacrylate to investigate affect of the number of ethylene oxide. The gel polymer electrolyte showed good electrochemical stability up to 4.5 V vs. Li/Li and high ionic conductivity at various temperatures. The lithium-ion polymer batteries with the gel polymer electrolyte, tetra(ethylene glycol) diacrylate- and tri(ethylene glycol) dimethacrylate-based, also represented good electrochemical performances such as rate capability, low-temperature performances and cycleability. However, the cell with tri(ethylene glycol) dimethacrylate, which has three ethylene oxide, showed better electrochemical performance.

The Effect of Oral Administration of Ethanol in Ethylene Glycol Intoxication in Dogs (개의 Ethylene Glycol 중독에 대한 에탄올의 경구투여 효과)

  • Part Cheol-Man;Han Hong-Ryul
    • Journal of Veterinary Clinics
    • /
    • v.4 no.1
    • /
    • pp.423-432
    • /
    • 1987
  • The present studies were undertaken in attempt to investigate the therapeutic effect of ethanol in dogs intoxicated with ethylene glycol Three dogs treated with ethylene glycol and other three dogs with ethylene glycol plus 20% ethanol orally were examined on clinical signs, endoscopic views, histopathological findings, and autopsy findings respectively. The results obtained were summarized as fellows : 1. The clinical sings and their severity of dogs intoxicated with ethylene glycol were time related and progressed from vomiting, depression, thirsty, tachycardia, tachypnea, convulsiot ataxia, melena, uremia and coma, but clinical signs of dogs treated with ethylene glycol and ethanol simultaneously only stowed vomiting and thirsty. 2. In the gastroscopic view, the dogs intoxicated with ethyelne glycol showed edematous, hyperemia, errosive and ulcerative lesions in the fundus and body area but the dogs treated with ethylene glycol and ethanol simultanously showed edematous and hyperemic lesions. 3. Oral treatment of ethanol with ethylene glycol simultaneously have reduced the signs of EG intoxications in dogs.

  • PDF

Role of Calcium on Auxin-Induced Ethylene Production in Etiolated Mungbean(Vigna radiata W.) Hypocotyls (녹두(Vigna radiata W.) 하배축의 오옥신 유발 에틸렌 생성 과정에서 $Ca^{2+}$의 작용)

  • 문혜정
    • Journal of Plant Biology
    • /
    • v.32 no.4
    • /
    • pp.265-274
    • /
    • 1989
  • The effect of Ca2+ on auxin-induced ehtylene production in etiolated mungbean (Vigna radiata W.) hypocotyls was studied. Auxin-induced ethylene production by mungbean seedlings which had been germinated in the presence of 5-10mM Ca2+ (High Ca2+ ; HC) is greater than that by seedlings which had been germinated in distilled water (Low Ca2+ ; LC). The effect of Ca2+ on auxin-induced ethylene production was greatly increased after 12hr of incubation period. The stimulation of auxin-induced ethylene production by Ca2+ was specific, since divalent cations, such as Mg2+ and Mn2+ did not enhance auxin-induced ethylene production. Calcium also promoted ethylene evoluation induced by methionine and 1-Aminocyclopropane-1-carboxylic acid(ACC). The effect of Ca2+ on auxin-induced ethylene production was not caused by increase in free IAA or ACC contents of hypocotyl tissue. Dimethyl sulfoxide and Triton X-100, that disrupts the emembranes, inhibited ethylene production to a greater extent in LC segments than in HC segments. Addition of Ca2+ to the incubation medium for LC segments resulted in enchancement of ethylene production probalby because the membrane integrity is supported under these conditions. Comparison of activity of Ethylene Forming Enzyme(EFE) in LC and HC hypocotyl segments indicated that the enzyme activity of HC was about 2 times higher than that of L.C. It is suggested that Ca2+ increases the activity of plasma membrane-bound EFE through its stabilizing effect onn the membrane, which in turn brings about promotion of ethylene production.

  • PDF

Effects of Methyl Jasmonate on Ethylene Producton in Tomato (Lycopersicon esculentum Mill.) Hypocotyl Segments and Fruits (Methyl jasmonate가 토마토(Lycopersicon esculentum Mill.)하배축 절편과 열매에서 에틸렌 생성에 미치는 영향)

  • June Seung Lee
    • Journal of Plant Biology
    • /
    • v.38 no.3
    • /
    • pp.235-242
    • /
    • 1995
  • Effects of methyl jasmonate (MeJA) on ethylene production in tomato(Lycopersicon esculentum Mill.) hypocotyl segments and fruits were studied. Ethylene production in tomato hypocotyl segments was inhibited by the increasing concentratons of MeJA, and 450 $\mu$M of MeJA showed 50% inhibitory effect. Time course data indicate that this inhibitory effect of MeJA appeared after 3 h of incubation period and continued until 24 h. Inhibition of ethylene producton by MeJA was due to the decrease in 1-aminocyclopropane-1-carboxylic acid(ACC) synthase activity. However, MeJA treatment had no effect on ACC oxidase activity and the accumulaton of ACC oxidase mRNAs. MeJA also inhibited auxin-induced ethylene production by decreasing in ACC synthase activity. In contrast, MeJA stimulated ethylene production in tomato fruits. When 30 $\mu$L/mL MeJA was treated in a gaseous state, ethylene production doubled and this stimulating effect continued until 4 days. To investigate the mechanisms of MeJA on ethylene production, ACC synthase and ACC oxidase activities were examined after MeJA treatment. MeJA increased the activities of both ACC synthase and ACC oxidase, and induced ACC oxidase mRNA accumulation. These data suggest that MeJA plays distinct roles in the ethylene production in different tomato tissues. It is possible that MeJA affects differently the mechanisms of signal transuction leading to the ethylene biosynthesis.

  • PDF

Activity test of post-reforming catalyst for removing the ethylene in diesel ATR reformate (디젤 자열개질 가스 내 포함된 $C_2H_4$ 제거를 위한 후개질기 촉매 활성 실험)

  • Yoon, Sang-Ho;Bae, Joong-Myeon;Lee, Sang-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.218-221
    • /
    • 2009
  • Solid oxide fuel cells (SOFCs), as high-temperature fuel cells, have various advantages. In some merits of SOFCs, high temperature operation can lead to the capability for internal reforming, providing fuel flexibility. SOFCs can directly use CH4 and CO as fuels with sufficient steam feeds. However, hydrocarbons heavier than CH4, such as ethylene, ethane, and propane, induce carbon deposition on the Ni-based anodes of SOFCs. In the case of the ethylene steam reforming reaction on a Ni-based catalyst, the rate of carbon deposition is faster than among other hydrocarbons, even aromatics. In the reformates of heavy hydrocarbons (diesel, gasoline, kerosene and JP-8), the concentration of ethylene is usually higher than other low hydrocarbons such as methane, propane and butane. It is importatnt that ethylene in the reformate is removed for stlable operation of SOFCs. A new methodology, termed post-reforming was introduced for removing low hydrocarbons from the reformate gas stream. In this work, activity tests of some post-reforming catalysts, such as CGO-Ru, CGO-Ni, and CGO-Pt, are investigated. CGO-Pt catalyst is not good for removing ethylene due to low conversion of ethylene and low selectivity of ethylene dehydrogenation. The other hand, CGO-Ru and CGO-Ni catalysts show good ethylene conversion, and CGO-Ni catalyst shows the best reaction selectivity of ethylene dehydrogenation.

  • PDF

The Effect of Oligosaccharides on Ethylene Production in Mung Bean (Vigna radiata W.) Hypocotyl Segments

  • Choy, Yoon-Hi;Lee, Dong-Hee;Lee, June-Seung
    • Journal of Plant Biology
    • /
    • v.39 no.4
    • /
    • pp.295-300
    • /
    • 1996
  • The physiological effects of oligogalacturonic acid (OGA:D. P. 6-7), a product of acid hydrolysis of polygalacturonic acid (PGA), on ethylene biosynthesis in mung bean (Vigna radiata W.) hypocotyl segments was studied. Among PGA, OGA and monogalacturomic acid (MGA), only OGA stimulated ethylene production in mung bean hypocotyl segments, and the most effective concentraton of OGA was 50$\mu\textrm{g}$/mL. Time course data indicated that this stimulatiion effect of OGA appeared after 90 min incubation period and continued until 24 h. When indol-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) were treated with OGA to investigate the mechanism of OGA on ethylene production, they did not show synergistic effects on ethylene production. The stimulation of ethylene production by OGA was due to the increase of in vivo ACC synthase activity, but OGA treatment had no effect of in vivo ACC oxidase activity. The effect of aminoethoxy vinyl glycine (AVG) and Co2+, the inhibitor of ethylene synthesis, was siminished a little by the OGA, but the treatment of Ca2+, known to increase ACC, with OGA did not increase the ethylene production, this effect seems to be specific for Ca2+ because other divalent cation, Mg2+, did not show the inhibition of OGA-indyuced ethylene production. It is possible that the OGA adopts a different signal transduction pathway to the ethylene bioxynthesis.

  • PDF

Regulation of Ethylene Biosynthesis by Phytohormones in Etiolated Rice (Oryza sativa L.) Seedlings

  • Lee, Han Yong;Yoon, Gyeong Mee
    • Molecules and Cells
    • /
    • v.41 no.4
    • /
    • pp.311-319
    • /
    • 2018
  • The gaseous hormone ethylene influences many aspects of plant growth, development, and responses to a variety of stresses. The biosynthesis of ethylene is tightly regulated by various internal and external stimuli, and the primary target of the regulation is the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS), which catalyzes the rate-limiting step of ethylene biosynthesis. We have previously demonstrated that the regulation of ethylene biosynthesis is a common feature of most of the phytohormones in etiolated Arabidopsis seedlings via the modulation of the protein stability of ACS. Here, we show that various phytohormones also regulate ethylene biosynthesis from etiolated rice seedlings in a similar manner to those in Arabidopsis. Cytokinin, brassinosteroids, and gibberellic acid increase ethylene biosynthesis without changing the transcript levels of neither OsACS nor ACC oxidases (OsACO), a family of enzymes catalyzing the final step of the ethylene biosynthetic pathway. Likewise, salicylic acid and abscisic acid do not alter the gene expression of OsACS, but both hormones downregulate the transcript levels of a subset of ACO genes, resulting in a decrease in ethylene biosynthesis. In addition, we show that the treatment of the phytohormones results in distinct etiolated seedling phenotypes, some of which resemble ethylene-responsive phenotypes, while others display ethylene-independent morphologies, indicating a complicated hormone crosstalk in rice. Together, our study brings a new insight into crosstalk between ethylene biosynthesis and other phytohormones, and provides evidence that rice ethylene biosynthesis could be regulated by the post-transcriptional regulation of ACS proteins.

Effect of TIBA on the Brassiolide-induced Gravitropic Response in the Primary Roots of Maize (옥수수 일차뿌리에서 TIBA가 brassinolide에 의해 유도된 굴중성 반응에 미치는 영향)

  • Kang, Byung-Hee;Park, Jea-Hye;Kim, Jong-Sik;Jang, Soo-Chul;Kim, Seung-Ki;Kim, Soon-Young
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1139-1144
    • /
    • 2009
  • It has been known that brassiolide (BL) increased the positive gravitropic response and ethylene production in maize roots. This study examined the relationship between the BL-induced gravitropic response and ethylene Production. The ethylene production was inhibited to about 90% of the control by the treatment of $10^{-4}$ M aminoethoxyvinylglycine (AVG), the ethylene synthesis inhibitor. However, the gravitropic response did not show any significant changes compared to the control at $10^{-4}$ M AVG. In the case of treatment of AVG with BL, the ethylene production decreased to 60% of the control. However, the gravitropic response increased to the level which was induced by BL. Cobalt ions, another ethylene biosynthesis inhibitor, inhibited ethylene production, but not gravitropic response. When roots were treated with BL and cobalt ions, they showed the inhibition of ethylene production and promotion of gravitropic response. To elucidate the possibility that the effect of BL is related to auxin transport, roots were treated with TIBA (2,3,5-triiodobenzoic acid), an auxin transport inhibitor. Both treatment of TIBA alone and TIBA with BL stimulated ethylene production to about 96% and 132%, respectively. However, gravitropic response was completely inhibited in both treatments. Further, roots treated with BL in the presence of TIBA and IAA showed a negative gravitropic response, which means that IAA accumulates in the upper side of horizontal roots. Root elongation was also stimulated in this treatment. Taken together, these results suggest that BL might affect the differential distribution of internal IAA on roots, causing the regulation of positive gravitropic response.

Phase Behavior of Ternary Mixture of Poly(ethylene-co-octene) - Ethylene - 1-Octene (Poly(ethylene-co-octene) - Ethylene - 1-Octene 3성분계 혼합물의 상거동)

  • Lee, Sang-Ho;Sohn, Jin-Eun;Chung, Sung-Yoon;Han, Sang-Hoon
    • Elastomers and Composites
    • /
    • v.41 no.2
    • /
    • pp.116-124
    • /
    • 2006
  • Cloud-point data to $160^{\circ}C$ and 1,000 bar are presented with poly(ethylene-co-15.3 mole% octene) copolymers ($PEO_{15}$) in pure 1-octene and mixtures of ethylene - 1-octene. The cloud-point curves for $PEO_{15}$ - ethylene - 1-octene mixture dramatically increase in pressure to as high as 1,000 bar with an increasing ethylene concentration. At ethylene concentrations less than 18 wt%, the ternary mixture has bubble- and cloud-point curves. As the ethylene concentration of the ternary mixture increases, the bubble-point curve and the single-phase region reduce. The reduction in the single phase region with increasing ethylene concentrations is the result of reduced dispersion interactions between $PEO_{15}$ and the mixed solvent. The single-phase region decreases with increasing temperatures when ethylene concentrations are lower than 36 wt%, whereas the single-phase region increases with temperatures at ethylene concentrations greater than 50 wt%. At ethylene concentrations greater than 50 wt% the effect of the polar interactions of the mixed solvent, which is unfavorable to dissolve PEO, is greater than the effect of the density of the mixed solvent. Therefore, the cloud-point pressures increase with a decreasing temperature. However, at ethylene concentrations less than 50 wt%, the cloud-point pressures decrease with temperature, because the effect of the polar interactions is less than the density effect.