• Title/Summary/Keyword: ethylene sensitivity

Search Result 48, Processing Time 0.03 seconds

Towards the Development of Long-Life Crops by Genetic Engineering of Ethylene Sensitivity

  • Ezura, Hiroshi
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.4
    • /
    • pp.345-352
    • /
    • 2000
  • Food production is a major role of agriculture. It has been projected that the world population continues to increase by the middle of the 21st century, and the population growth results in raising a serious problem of food shortage. Thus we have to increase food as possible. A considerable amount of crops have been abandoned due to short-life after postharvest. Ethylene is a factor responsible for the postharvest loss in crops, especially horticultural crops. If we can reduce ethylene production or sensitivity by genetic engineering, we can develop, so called,“long-life crop”conferring long postharvest lives. During last two decades, intensive research for molecular dissection of ethylene biosynthesis has been carried out, and the researchers have succeeded in engineering ethylene productivity in some crops. On the other hand, after the successful isolation of Arabidopsis ethylene receptor gene ETR1, the homolog genes have been isolated in various plant species. Currently the characterization of these genes and alteration of ethylene sensitivity using the genes are in progress. This review summarizes current progress in the analysis of these genes, and discusses genetic engineering of ethylene sensitivity using these genes.

  • PDF

Ethylene-Induced Auxin Sensitivity Changes in Petiole Epinasty of Tomato Mutant dgt

  • Chang, Soo Chul;Lee, Myung Sook;Lee, Sang Man;Kim, Jinseok;Kang, Bin G.
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.257-262
    • /
    • 1994
  • The tomato (Lycopersicon esculentum Mill.) mutant diageotropica (dgt) lacking normal gravitropic response is known to be less sensitive to auxin compared with its isogenic parent VFN8. Straight growth as well as ethylene production in response to added auxin in hypocotyl segments of dgt was negligible. However, there was no significant difference between the two genotypes in auxin transport in petiole segments and its inhibition by the phytotropin N-1-naphthylphthalamic acid(NPA). Kinetic parameters of NPA binding to microsomal membranes were also non-distinguishable between the two. Its petiolar explants treated with ethylene developed epinastic curvature with the magnitude of response increased about 3 folds over non-mutant wild type. Ethylene-induced epinasty in both dgt and VFN8 was nullified by treatment of explants with the ethylene autagonist 2,5-norbonadiene. Lateral transport of 3H-IAA toward the upper side of ethylene-treated petioles in dgt, however, was not significantly more pronounced than in VFN8, the implications being that auxin sensitivity in the mutant was restored, or even rised above the wild type, by ethylene.

  • PDF

Injury Responses of Landscape Woody Plants to Air Pollutants - Visible Injury and Ethylene Production - (조경수목(造景樹木)의 대기오염물질(大氣汚染物質)에 대한 피해반응(被害反應)(II) - 엽피해(葉被害)와 Ethylene 발생량(發生量)을 중심으로 -)

  • Kim, Myung Hee;Lee, Soo Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.82 no.4
    • /
    • pp.328-336
    • /
    • 1993
  • This study was conducted to investigate sensitivity of tree seedlings to $SO_2$. Visible injury symptoms and changes of ethylene production were investigated in tree seedlings with the fumigation of $SO_2$ in gas chamber 4 hours a day for six days. The symptoms of visible injury did not appear below 0.5ppm level of $SO_2$ exposure but a change of visible injury with the passage of time appeared at 1.5 and 2.5ppm in all seedlings. With the higher the concentration and/or the longer exposure of $SO_2$ the visible injury symptoms on leaves increased in all seedlings. The sensitivity of seedlings to $SO_2$ was the highest in Liriodendron tulipifera followed by Pinus strobus, Ginkgo biloba, Pinus densiflora and Pinus koraiensis. The amount of ethylene production was more at 1.5 and 2.5ppm of $SO_2$ exposure than at 0.5ppm and the peak time of it came faster at higher levels. The amount of ethylene production was significantly different among tree seedlings. It showed a higher at production of ethylene in Liriodendron tulipifera compared to Ginkgo biloba and the ethylene production of Pinus trees to $SO_2$ were the highest in Pinus strobus followed by Pinus densiflora and Pinus koraiensis. In needle of Pinus strobus the ethylene production increased with the increasing rate of visible injury until the injury rate of 40-50% and than decreased with the increasing rate of visible injury since the rate of 50%.

  • PDF

$Co_{3}O_{4}$ butane gas sensor operating at low temperature (I) (저온동작용 $Co_{3}O_{4}$ 부탄가스 감지 소자(I))

  • Chung, Jin-Hwan;Choi, Soon-Don
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.6
    • /
    • pp.7-14
    • /
    • 1996
  • In order to develop gas sensor operating at low temperature, thick film $Co_{3}O_{4}$ sensor was fabricated. $Co_{3}O_{4}$ powder was prepared by precipitation from cobalt nitrate solution and the powders containing ethylene glycol as a binder was screen-printed on alumina substrate. Characteristics of sensitivity, response time, and recovery were investigated in terms of binder content and heat treating conditions. The $Co_{3}O_{4}$ sensor contained 15% ethylene glycol and heat-treated at $300^{\circ}C$ for 24hr showed the highest sensitivity at the operating temperature of $250^{\circ}C$. Its sensitivity of 1.1 to 5000ppm butane gas was very high, as compared with $0.8{\sim}0.85$ at the operating temperature of $350{\sim}400^{\circ}C$ for a commercial $SnO_{2}$ gas sensor. It is found that response time was fast, but recovery was poor for the sensor.

  • PDF

Low temperature-operating NiO-CoO butane gas sensors

  • Jung, Dong-Ho;Choi, Soon-Don;Min, Bong-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.303-307
    • /
    • 2008
  • $NiO,\;Cu_2O,\;Mn_2O_3$ and $Cr_2O_3$ as p-type semiconductors were added in CoO with 15 wt.% ethylene glycol binder and measured the butane gas sensing characteristics. The highest sensitivity is obtained for the NiO-CoO sensors. CoO-20 at.% NiO sensor with 15 wt.% ethylene glycol binder sintered at $1100^{\circ}C$ for 24 h exhibits high sensitivity of 90 % to 5000 ppm butane gas at the sensor temperature of $250^{\circ}C$, compared to low sensitivities at the low operating temperature for commercial sensors. Response and recovery times are, respectively, within few seconds and 1min in the static flow system, indicating rapid adsorption and desorption of butane gas on sensor surface even at this low temperature.

A Study on Formation of Hemoglobin Adduct in Blood of Mice Inhaled with Ethylene Oxide (에틸렌옥사이드에 폭로된 흰쥐의 혈액에 형성된 헤모글로빈 부가체에 대한 연구)

  • Lee Jin-Heon;Shin Ho-Sang;Ahn Hye-Sil
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.2 s.89
    • /
    • pp.164-170
    • /
    • 2006
  • Ethylene oxide is a genotoxic carcinogen with widespread uses as industrial chemical intermediate and gaseous sterilant. 2-hydroxyethylated N-terminal valine in Hb is a good biomarker for biological monitoring of ethylene oxide exposure, because of its stability. For measuring the hemoglobin adduct formed by exposure of ethylene oxide, we studied the determination of (N-2-hydroxy-ethyl)valine(HEV) in hemoglobin adduct by using GC/MS. Firstly we synthesized HEV with 2-amino-ethanol and bromoisovaleric acid(BIVA) and confirmed it with GC/MS-FID. Its fragmentations were m/z 116(base ion, M+-45) and m/z 130(M+-31). For measuring HEV with higher sensitivity, we use derivatives which were PFPITH(pentafluorophenylisothiocianate) and TBDMS (tributyldimethylsilylation) by using Edman procedure. Its fragmentation were m/z 425(M+-57), m/z 383(M+-99) and m/z 172(M+-310) by using GC/MS. We did biological monitoring for mice inhalation exposure with 400 ppm ethylene oxide. The concentrations of hemoglobin adduct were $168{\pm}3.8\;and\;512{\pm}04$(nmol g-1 globin) at 0.5 hr/day 400 ppm ethylene oxide inhalation exposure group, and $631{\pm}17\;and\;2265{\pm}9.4$(nmol g-1 globin) at 1.0 hr/day 400 ppm ethylene oxide inhalation exposure for 1 and 4 weeks, respectively. We confirmed that (N-2-hydroxy-ethyl)valine(HEV) of hemoglobin was a good biomarker for biomonitoring of ethylene oxide exposure, and can measured with derivatives such as PFPITH(pentafluorophenylisothiocianate) and TBDMS(tributyldimethylsilylation) by using GC/MS.

Evaluation on Biological Sensitivity of Three Fumigants Used for Conservation of Wooden Cultural Property

  • Kim, Si Hyun;Kim, Dae Woon;Lee, Hyun Ju;Lee, Byung Ho;Kim, Bong Su;Chung, Yong Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.526-538
    • /
    • 2016
  • Fumigants are used worldwide for control of biological agents that damage wooden cultural property. To establish a policy for fumigant use, biological evaluation of insects and microorganisms considering many factors is required. This study was performed to evaluate biological sensitivity and wood penetration of three fumigants applied for control of biological agents that damage wooden cultural properties in Korea. Among these, methyl bromide and ethylene oxide can control insects and fungi when exposed directly. However, they were unable to completely control biological agents within deeper parts of wood. Ethanedinitrile, which was developed as an alternative fumigant, exhibited outstanding wood penetration and biocidal efficacy. Further research involving various environmental conditions is warranted.

Quasi-Distributed Temperature Sensor Based on a V-Grooved Single-Mode Optical Fiber Covered with Ethylene Vinyl Acetate

  • Kim, Kwang Taek;Jeong, Seong-Gab
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.229-233
    • /
    • 2014
  • In this study, a V-grooved single-mode fiber along with optical time domain reflectometry (OTDR) as a quasi-distributed temperature sensor was investigated. The external medium used to fill the V-groove affects the optical mode. The V-groove was filled with ethylene vinyl acetate (EVA) because its transmittance was sensitive to temperature. The experimental results showed that the optical loss of the sensor varies with temperature, and the sensitivity depends on the depth of the V-groove.

A simple and sensitive assay for chitinolytic activity of the recombinant CHT1 proteins from the hard tick H. longicornis using ethylene glycol chitin (Ethylene glycol chitin을 이용한 진드기 H. longicornis 재조합 CHT1 단백의 키틴분해능 검정 연구)

  • You, Myung-Jo;Fujisaki, Kozo
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.1
    • /
    • pp.145-150
    • /
    • 2003
  • To determine effectively the chitinolytic activity of rCHT1 from the hard tick H. longicornis expressed in baculovirus-mediated Spodoptera frugtperda (Sf) 9 cells, a simple and sensitive assay system was established in solid phase using agarose gel containing ethylene glycol chitin as substrate. The various factors affecting the efficacy of the assay were also investigated. The effects of various temperature, dosages of proteins, pH of media and time courses of reaction were examined to verify the sensitivity of assay for chitinolytic activity of rCHT1 protein. It was found that the optimal reactive conditions were $37^{\circ}C$ of temperature, 12 to 15 hours of reactive times, $0.1{\mu}g$ of protein concentration and pH 5 to 7 of media. Using the assay system designed, the functional activities of H. longicornis rCHT1l protein could be evaluated simply and sensitively.