• 제목/요약/키워드: ethylene copolymer

검색결과 280건 처리시간 0.02초

가교제의 화학 구조에 따른 에틸렌 비닐 아세테이트 공중합체의 가교 특성 고찰 (Crosslinking Characteristics of Ethylene Vinyl Acetate Copolymer by the Structure of Crosslinking Agents)

  • 이종록;최창석;강호종
    • 폴리머
    • /
    • 제33권2호
    • /
    • pp.131-136
    • /
    • 2009
  • 과산화물 가교제의 화학적 구조가 에틸렌 비닐 아세테이트 공중합체(EVA)의 용융 가교 반응에 미치는 영향과 가교 EVA의 물성을 살펴보았다. 한 개의 peroxy group을 갖는 perbutyl peroxide(PBP)가 두 개의 peroxy group을 갖는 2,5 dimethyl 2,5 di(tert-butylperoxyl) hexane (25B40)과 1,1-di(tert-buthylperoxy)-3,3,5-tri-methylcyclohexane(3M40) 보다 효과적으로 EVA 용융 가교 반응을 유발시킴을 확인하였으며 가교 촉진제의 사용에 따라 가교 반응 시간은 단축되나 가교도의 증가는 크지 않음을 알 수 있었다. 가교 EVA는 EVA에 비하여 가교에 의한 망상 구조에 의하여 흐름 특성은 감소하는 반면 기계적 특성이 우수해 짐을 알 수 있었다.

Increasing the attractiveness of physical education training with the involvement of nanotechnology

  • Jinyan Ge;Yuxin Hong;Rongtian Zeng;Yunbin Li;Mostafa Habibi
    • Advances in concrete construction
    • /
    • 제16권6호
    • /
    • pp.291-302
    • /
    • 2023
  • As the first part of the body that strikes the ground during running, sports shoes are especially important for improving performance and reducing injuries. The use of new nanotechnology materials in the shoe's sole that can affect the movement angle of the foot and the ground reaction forces during running has not been reported yet. It is important to consider the material of the sole of the shoe since it determines the long-term performance of sports shoes, including their comfort while walking, running, and jumping. Running performance can be improved by polymer foam that provides good support with low energy dissipation (low energy dissipation). Running shoes have a midsole made of ethylene propylene copolymer (EPP) foam. The mechanical properties of EPP foam are, however, low. To improve the mechanical performance of EPP, conventional mineral fillers are commonly used, but these fillers sacrifice energy return. In this study, to improve the magnificence of physical education training with nanotechnology, carbon nanotubes (CNTs) derived from recycled plastics were prepared by catalytic chemical vapor deposition and used as nucleating and reinforcing agents. As a result of the results, the physical, mechanical, and dynamic response properties of EPP foam combined with CNT and zinc oxide nanoparticles were significantly improved. When CNT was added to the nanocomposites with a weight percentage of less than 0.5 wt%, the wear resistance, physical properties, dynamic stiffness, compressive strength, and rebound properties of EPP foams were significantly improved.

이미다졸과 계면활성제가 기상중합법으로 제조된 PEDOT 박막의 광-전기적 특성에 미치는 영향 (Effect of Imidazole and Surfactant on the Opto-Electrical Properties of PEDOT Thin Films via Vapor Phase Polymerization)

  • 카드카 로산;임진형
    • 폴리머
    • /
    • 제39권3호
    • /
    • pp.461-467
    • /
    • 2015
  • 본 논문은 ferric p-toluenesulfonate를 산화제에 약 염기인 이미다졸과 poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol) (PEG-PPG-PEG) 계면활성제를 동시 첨가하여 기상중합법으로 제조된 poly(3,4-ethylenedioxythiophene) (PEDOT) 박막의 광-전기적 특성 향상에 대한 것이다. 여러 가지 조건에서 제조된 PEDOT 박막 특성과 산화제의 첨가제로 사용된 약 염기와 계면활성제의 조합 효과의 상관관계를 규명하고자 하였다. 이미다졸과 PEG-PPG-PEG로 구성된 첨가제를 사용하여 제조된 PEDOT 박막은 $1300S{\cdot}cm^{-1}$ 이상의 전도성을 가졌다. PEG-PPG-PEG계 계면활성제의 분자량이 기상 중합을 이용한 PEDOT 박막의 특성에 미치는 영향도 조사하였다.

Zirconocene-catalyzed Copolymerizations of Ethylene with 5-Methyl-1,4-hexadiene as Non-conjugated Diene

  • Jin, Yong-Hyun;Im, Seung-Soon;Kim, Sang-Seob;Soonjong Kwak;Kim, Kwang-Ung;Kim, Keon-Hyeong;Kim, Jungahn
    • Macromolecular Research
    • /
    • 제10권2호
    • /
    • pp.97-102
    • /
    • 2002
  • The mixtures of non-conjugated dienes, 4-methyl-1,4-hexadiene and 5-methyl-1,4-hexadiene (MHD), were successfully synthesized by the reaction of isoprene with ethylene using Fe(III)-based catalyst in toluene. The conversion was over 96 mol% on the basis of the initial amount of isoprene used. The production yield for MHD was nearly 50 mol%, the other was polyisoprene. The mixtures were successfully copolymerized with ethylene by using zirconium-based metallocenes. The products were characterized by the combinations of gas chromatography, high temperature gel permeation chromatography, $^1$H NMR, $^{13}$ C NMR, high temperature $^1$H NMR, UV/visible spectroscopy, and differential scanning calorimetry. It was found that 5-methyl-1,4-hexadiene was active enough to be incorporated into the copolymer chain but the corresponding isomeric material,4-methyl-1,4-hexadiene, was inactive in metallocene-catalyzed copolymerizations. Specifically, in the zirconocene-catalyzed copolymerizations of ethylene with MHD, ansa-structure catalysts seem to be more efficient than non-bridged type zirconocene. The degree of incorporation of MHD in the resulting copolymers was able to be controlled by the amount of non-conjugated dienes used initially.

순차적 음이온 및 개환중합반응을 통한 폴리스티렌-폴리에틸렌옥사이드-폴리락티드 블록공증합체의 합성 (Synthesis of Polystyrene-b-Poly(ethylene oxide)-b-Polylactide Copolymers via Sequential Anionic and Ring-Opening Polymerizations)

  • 송걸;조병기
    • 폴리머
    • /
    • 제33권5호
    • /
    • pp.458-462
    • /
    • 2009
  • 본 연구에서는 순차적 음이온 및 개환중합반응을 통해 ABC 형태의 폴리스티렌-폴리에틸렌옥사이드-폴리락티드 블록공중합체를 성공적으로 합성하였다. 우선, 첫번째 블록인 폴리스티렌을 합성하기 위해서, 사이클로헥산 용매에서 스티렌/이차-부틸리튬을 각각 단량체/개시제로 사용하여 음이온중합(anionic polymerization)을 수행하였고, 이후 고분자 말단을 수산기로 전환시키기 위해, 에틸렌옥사이드를 첨가하였다. 다음 단계로 포타슘 나프탈레나이드(potassium naphthalenide)를 이용하여 폴리스티렌 말단 수산기의 수소를 제거하여, 거대개시제인 PS-$O^-K^+$를 제조하였다. 준비된 거대 개시제에 정량된 에틸렌옥사이드를 첨가하여, 음이온중합을 수행하였다. 폴리락티드 블록을 도입시키는 개환중합의 경우, THF 용매에서 트리에틸알루미늄(triethylaluminum)/피리딘(pyridine)시스템을 이용하여 PS-b-PEO-$AlEt_2$ 형태의 거대개시제를 형성한 후, $90^{\circ}C$에서 중합을 수행하였다. 합성된 블록공중합체를 수소핵자기공명법 및 겔침투크로마토그래피 방법을 통해 조사한 결과, 잘 정의된 분자량 및 낮은 분자량 분포를 나타냄을 확인할 수 있었다.

메톡시 폴리(에틸렌 글리콜)-폴리($\varepsilon$-카프로락톤) 공중합체의 온도감응성 솔-젤 전이 거동 (Thermosensitive Sol-gel Phase Transition Behavior of Methoxy poly(ethylene glycol)-b-poly($\varepsilon$-caprolactone) Diblock Copolymers)

  • 서광수;박종수;김문석;조선행;이해방;강길선
    • 폴리머
    • /
    • 제28권4호
    • /
    • pp.344-351
    • /
    • 2004
  • 온도에 반응하는 고분자로서 폴리(에틸렌 글리콜)을 기본으로 다이블록 및 트리블록 폴리에스테르 공중합체들은 비독성과 생체적합성 그러고 생분해성 특징 때문에 주사제형의 약물전달체로서 많은 응용이 이루어지고 있다. 본 연구에서는 다이블록 공중합체를 이용한 새로운 솔-젤 전이 현상을 갖는 고분자를 준비하고자, 평균분자량 750g/mole의 메톡시 폴리(에틸렌 글리콜)과 카프로락톤을 실온에서 HCI $.$ Et$_2$O 존재 하에서 개환중합을 실시하였다. 합성된 고분자는 시차주사열량계와 X-선 회절기를 이용하여 특성을 분석하였고, 수용액상에서의 고분자 용액은 실온에서 신체온도로 온도를 상승시키면 졸에서 겔 상으로의 상변화를 보였다. 신체온도 부근에서의 겔 형성을 확인하기 위하여 20 W% 졸 상태의 고분자용액을 쥐의 피하에 주입한 결과 분산 없이 겔이 잘 형성되었고 2개월 간 겔이 유지됨을 확인하였다. 이러한 연구 결과로, 새로운 솔-젤 상전이 현상을 보이는 다이블록 공중합체를 합성하였고, 주사형 이식 재료로의 가능성을 확인하였다.

EPDM 고무에 Acrylonitrile과 4-Chlorostyrene의 그라프트 공중합 (Graft Copolymerization of Acrylonitrile and 4-Chlorostyrene onto EPDM Rubber.)

  • 박덕제;하창식;이진국;조원제
    • Elastomers and Composites
    • /
    • 제24권2호
    • /
    • pp.110-121
    • /
    • 1989
  • The radical initiated graft copolymerization of acrylonitrile(AN) and 4-chlorostyrene(4-Clst) onto ethylene-propylene-diene terpolymer(EPDM) rubber was investigated under various conditions. Graft copolymer(AU-EPDM-4-Clst) was isolated b: selective solvent extraction and identified by using IR spectroscopy. The percent grafting is determined as a function of solvent, reaction time, and monomer mole ratio. Percent grafting decreased in the order of tetrahydrofuran(THF)>THF/ethyl acetate(EA)(1 : 1)>cyclohexane/EA(1 : 1)>n-hexane/EA(1 : 1). Grafting increased continuously with increasing the reaction time up to 40 hr, beyond which the grafting levelled off. It was observed that percent grafting increased as increasing [4-Clst]/[AN] mole ratio, but decreased when [4-Clst]/[AN] mole ratio was higher than 1.60. The light resistance of graft copolymer(AN-EPDM-4-Clst) was better than that of ABS.

  • PDF

Ordered Fragmentation of pDNA induced by PEG-PLL block copolymer -Correlation between Condensation degree and Biological Activity by Cell-Free System-

  • Osada, Kensuke;Doi, Motoyoshi;Shiotani, Tomonori;Yamasaki, Yuichi;Kataoka, Kazunori
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.254-254
    • /
    • 2006
  • The sensitivity of plasmid DNA (pDNA) to S1 nuclease, an enzyme to cleave a single-strand DNA, was dramatically modulated through a supramolecular assembly (polyion complex micelle) with a synthetic block copolymer, poly(ethylene glycol)-b-poly(L-lysine) (PEG-PLL). The pDNA condensed in stoichiometric charge ratio was cleaved into 7 fragments each being 10/12, 9/12, 8/12, 6/12, 4/12, 3/12, and 2/12 of the original DNA length, on the other hand, the pDNA condensed in higher charge ratios (>4), were digested into non-specific manner. Condensation of the pDNA was investigated from two viewpoints that how does the rigid DNA molecules fold and condense and how does the condensation influence their biological activity.

  • PDF

Synthesis and Characterization of MPEG-b-PDPA Amphiphilic Block Copolymer via Atom Transfer Radical Polymerization and Its pH-Dependent Micellar Behavior

  • Dayananda, Kasala;Kim, Min-Sang;Kim, Bong-Sup;Lee, Doo-Sung
    • Macromolecular Research
    • /
    • 제15권4호
    • /
    • pp.385-391
    • /
    • 2007
  • Block copolymer micelles are generally formed via the self-assembly of amphiphilic block copolymers in an aqueous medium. The hydrophilic and hydrophobic blocks form shell and core micelles, respectively. The block copolymers of methoxy poly(ethylene glycol) (MPEG)-b-poly(2-diisopropylamino)ethyl methacrylate (PDPA) were synthesized via atom transfer radical polymerization, with the macro initiator synthesized by the coupling of 2-bromoisobutyryl bromide with MPEG in the presence of a triethyl amine base catalyst. The atom transfer radical polymerization of 2-diisopropylamino)ethyl methacrylate was performed in conjunction with an N,N,N',N",N"-pentamethyl-diethylenetriamine/copper bromide catalyst system, in DMF, at $70^{\circ}C$. The pH induced micellization/demicellization was studied using fluorescence, with a pyrene probe. Furthermore, the pH dependent micellization was confirmed using the microviscosity method, with a dipyme fluorescence probe. The pH dependant micelle size distribution was studied using dynamic light scattering. The characterization of the synthesized polymers was established using gel permeation chromatography and from the $^1H-nuclear$ magnetic resonance spectroscopy.

Biotin-Conjugated Block Copolymeric Nanoparticles as Tumor-Targeted Drug Delivery Systems

  • Kim, So-Yeon;Cho, Seung-Hea;Lee, Young-Moo
    • Macromolecular Research
    • /
    • 제15권7호
    • /
    • pp.646-655
    • /
    • 2007
  • To achieve targeted drug delivery for chemotherapy, a ligand-mediated nanoparticulate drug carrier was designed, which could identity a specific receptor on the surfaces of tumor cells. Biodegradable poly(ethylene oxide)/poly$({\varepsilon}-caprolactone)$ (PEG/PCL) amphiphilic block copolymers coupled to biotin ligands were synthesized with a variety of PEG/PCL compositions. Block copolymeric nanoparticles harboring the anticancer drug paclitaxel were prepared via micelle formation in aqueous solution. The size of the biotin-conjugated PEG/PCL nanoparticles was determined by light scattering measurements to be 88-118 nm, depending on the molecular weight of the block copolymer, and remained less than 120 nm even after paclitaxel loading. From an in vitro release study, biotin-conjugated PEG/PCL nanoparticles containing paclitaxel evidenced sustained release profiles of the drug with no initial burst effect. The biotin-conjugated PEG/PCL block copolymer itself evidenced no significant adverse effects on cell viability at $0.005-1.0{\mu}g/mL$ of nanoparticle suspension regardless of cell type (normal human fibroblasts and HeLa cells). However, biotin-conjugated PEG/PCL harboring paclitaxel evidenced a much higher cytotoxicity for cancer cells than was observed in the PEG/PCL nanoparticles without the biotin group. These results showed that the biotin-conjugated nanoparticles could improve the selective delivery of paclitaxel into cancer cells via interactions with over-expressed biotin receptors on the surfaces of cancer cells.