• Title/Summary/Keyword: ethylene

Search Result 3,592, Processing Time 0.038 seconds

Precursors for the Ethylene Evolution of Pseudornonas syringae pv. Phaseolicola (Pseudomonas syringae pv. Phaseolicola에 의한 Ethylene 생성에서의 전구물질)

  • Bae, Moo;Kweon, Hea-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.1
    • /
    • pp.14-20
    • /
    • 1991
  • - The purpose of this work is to investigate the effects of various substrates on biosynthesis of ethylene by the Kudzu strain of Pseudomonas syn'ngae pv. Phaseolicola causing halo blight. In the intact cell of P. sym'ngue, optimal condition for ethylene production was achieved at p1-I 7.5 and $30^{\circ}C$ for 9 to 10 hours of culture. Ethylene was most effectively produced from amino acids such as Asn, Gln, Asp ans Glu, compared to those of various kinds of sugars. While ethylene production from $\alpha$-ketoglutarate ($\alpha$-KG) was gradually increased throughout 51 hours incubation period tested. Ethylene production derived from citrate, $\alpha$-KG and oxalacetate as well as a few amino acids was further enhanced by the addition of histidine or arginine. In cell-free ethylene-forming system, ethylene was most effectively produced from $\alpha$-KG, compared to those from citrate, oxalacetate, Glu, Arg, or Asp, at 0.5 mM among the range from 0.25 mM to 5 mM. Anlinooxyacetate, an inhibitor of a pyridoxal phosphate-linked enzyme, completely inhibited ethylene evolution derived from Glu but not affect that derived from $\alpha$-KG. The results obtained in this work suggest that $\alpha$-KG might be a direct precursor of ethylene production in this organism than any other substrates tested.

  • PDF

Effects of ethylene treatment on postharvest quality in kiwi fruit

  • Lim, Byung-Seon;Lee, Jin-Su;Park, Hee-Ju;Oh, Soh-Young;Chun, Jong-Pil
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.340-345
    • /
    • 2016
  • The kiwi fruit (Actinidia deliciosa cv. 'Hayward') should be ripened at any step during postharvest handling before consumer consumption. This is essential for freshly harvested kiwi fruit. But, this requires correct temperatures and ethylene concentrations. More testing of a newly developed ethylene generator using charcoal for commercial purposes is needed. This study was conducted to investigate the optimum storage temperatures and the effect of ethylene on the postharvest quality of kiwi fruit. Three different ethylene concentrations of 10, 50, and $100{\mu}L{\cdot}L^{-1}$ were used on fresh kiwi fruit stored at different temperatures of 10, 15, and $20^{\circ}C$. The quality changes of the fruits were assessed by sensory evaluation and by measuring firmness, soluble solids content, titratable acidity, and ethylene production. Higher storage temperatures and ethylene concentrations softened the kiwi fruit quickly and led to the rapid loss of acidity while soluble solid contents of fruit increased to a significant extent during the same storage period. Similarly, the firmness of ethylene-treated fruits stored at 20 and $15^{\circ}C$ dramatically decreased in the experiment while treated fruits stored at $10^{\circ}C$ decreased only slightly. Quality characteristics of kiwi fruits stored at 15 and $20^{\circ}C$ were better than those of fruits at $10^{\circ}C$. With regards to the effect of temperature, fruits stored at lower temperatures took a longer time to ripen and retained their quality longer. The newly developed ethylene generator maintained the ethylene concentration in the 5 kg box at $40-400{\mu}L{\cdot}L^{-1}$. The ethylene generator could also be used to soften persimmons.

Biological Removal of EG from Weight Loss Treatment Wastewater & Complex Dyeing Process Wastewater

  • Lee, Hyeon-Uk;Im, Dong-Jun
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.505-508
    • /
    • 2001
  • An microorganism able to degrade ethylene glycol(EG) was developed. Using this microorganism, biological treatment of ethylene glycol was studied in Erlenmeyer flasks and a laboratory scale stirred loop bioreactor. The removal efficiencies of ethylene glycol from synthetic wastewater were 91.6% ${\sim}$ 97.7% at $30^{\circ}C$ ${\sim}$ $40^{\circ}C$, and 96.3% ${\sim}$ 97.9% at initial pH 9 ${\sim}$ 11 respectively. Also the removal efficiencies of ethylene glycol were found to be more then 92% at initial ethylene glycol concentration of 300mg/L ${\sim}$ I400mg/L. In treatment of weight loss treatment wastewater using Erlenmeyer flasks, the removal efficiencies of ethylene glycol were 79.6%. 82.5%. 77.6%. and 71.3% at initial pH 9. 10. 11. and 12.4 after 11 days of reaction. Moreover in treatment of complex dyeing process wastewater. the residual ethylene glycol was not detected at the initial pH 10.0 and pH 11.3 after 4 days of reaction. When stirred loop bioreactor was used for removing ethylene glycol, the residual ethylene glycol was not detected after 108 hrs and 60 hrs of reaction in batch treatment of weight loss treatment wastewater and complex dyeing process wastewater.

  • PDF

Ethylene Evolution in Tomato Plants by Ozone in Relation to Leaf Injury (토마토 오존처리에 의한 에틸렌 생성과 가시 장해 발현과의 관계)

  • 배공영;이용범
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.3
    • /
    • pp.333-340
    • /
    • 1996
  • The relationship between ozone-induced damages and ethylend evolution was examined in tomato plants fumigated with ozone of 0.2 $\mu\ell/\ell$. The rate of evolution of ethylent by tomato plants was enhanced by ozone fumigation. Pretreatment of leaves with aminoethoxyvinylglycine (AVG), an inhibitor of ethylene evolution, significantly inhibited the evolution of ethylene that was induced by ozone and concomitantly reduced the extent of ozone-induced visible damage to leaves. Treatment with 2,5-norbonadiene (NBD), and inhibitor of the action of ethylene, strongly reduced the extent of visible damage caused by ozone, even though it did not suppress the evolution of ethylene. These results indicated that ethylene might play an important role in ozone-induced plant injuries at relatively short terms of ozone fumigation. Next, we examined the effect of tiron, a scanvenger of the free-radical, on evolution of ethylene and leaf injury caused by ozone. Tiron treatment strongly reduced the extent of ozone-induced injury, but had not inhibitory effect on the evolution of ethylene from tomato leaves. This result suggests the involvement of free-radical, such as superoxide radicals, in induction of injuries caused by ozone.

  • PDF

Ethylene Production of Packaged Apples under Vibration Stress in Simulated Transportation Environment

  • Jung, Hyun-Mo;You, Young-Ok
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.23 no.2
    • /
    • pp.97-101
    • /
    • 2017
  • Fruits are subjected to a variety of vibration stress during the transportation from a production area to markets. Vibration inputs are transmitted from the transporting vehicle through the packaged fruit. And the steady state vibration input may cause serious internal damage of fruit. Product quality of fruits declines by various factors while they are stored right after harvesting and among the substance in charge of post ripening action, ethylene ($C_2H_4$) biosynthesis increases fruits' respiration process after harvesting and decreases storage expectancy. Ethylene production of apples rapidly increases while storage duration becomes longer. This tendency is much clearer for the apples with vibration stress at input acceleration level. When there was no vibration stress, change in ethylene production level of apples are not very large during storage. Ethylene production rates inside the gas collecting container increased significantly ($p{\leq}0.05$) after 24 hours storage, particularly for apples with vibration stress ($0.7{\mu}l/kg{\cdot}hr$ (1st stack), $0.78{\mu}l/kg{\cdot}hr$ (2nd stack), $0.96{\mu}l/kg{\cdot}hr$ (3rd stack)); whereas less ethylene was produced in control apples ($0.18{\mu}l/kg{\cdot}hr$ during storage. Also ethylene production rates of apples according to the stack position were significantly different ($p{\leq}0.05$). The vibration stress clearly accelerated the degradation of apple quality during storage, resulting in increased ethylene production.

Involvement of spermine in Control of Ethylene-Mediated Growth Response in Ranunculus sceleratus Petioles (Ranunculus sceleratus 엽병의 에틸렌 매개 생장반응조절에 있어서 Spermine의 관여)

  • 정미숙
    • Journal of Plant Biology
    • /
    • v.35 no.4
    • /
    • pp.425-429
    • /
    • 1992
  • Cell elongation is known to be promoted by ethylene in petioles of Ranunculus sceleratus. Treatment of petiole segments with spermine resulted in an inhibition of cell elongation and of ethylene biosynthesis in the presence of applied auxin. Dose response curve for the spermine inhibition of auxin-induced ethylene production appeared similar to that of ACC-based ethylene production suggesting that the polyamine inhibits ethylene biosynthesis by blocking the conversion of ACC to etylene. Auxin-induced ethylene production was significantly promoted by treatment of the tissue with either DFMA or DFMO. specific inhibitors of polyamine biosynthesis. Increased level of ethylene production by DFMA was found to be completely abolished by application of exogenous spermine at a high concentration. These results indicate that endogenous spermine plays a regulatory role in the growth response of Ranunculus petioles to auxin and ethylene.hylene.

  • PDF

The Rhizome Growth and Shoot Induction Influenced by Ethylene in Cymbidium niveo-maginatum (옥화란(Cymbidium niveo-maginatum) Rhizome의 생장 및 유식물체 분화에 미치는 Ethylene의 영향)

  • 민병훈;정해준;이은경;황혜연;이영복
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.6
    • /
    • pp.515-518
    • /
    • 1998
  • The effect of ethylene on the proliferation of rhizomes and plant regeneration were investigated from rhizome segment culture of Cymbidium niveo-marginatum. Ethylene levels in the rhizome culture vessels were reached a maximum after 8 days of culture; total amount of ethylene evolution was much on the initiation of shoot induction than of rhizome proliferation. The treatment with ethephon on rhizomes was inhibited in the proliferation of rhizome and the growth of shoot length; however, the treatment was effective on shoot induction from rhizomes. Aminoethoxyvinylglycine(AVG) 1mg/L was effective on the proliferation of rhizomes and shoot induction from them; however, the proliferation of them was inhibited, and the growth of shoot length was significantly promoted at the concentration of 10mg/L AVG. The presence of $\textrm{AgNO}_{3}$ inhibited in the proliferation of rhizomes and shoot induction from them.

  • PDF

Inhibition of ethylene biosynthesis enhances embryogenesis of cultured microspores of Brassica napus

  • Leroux, Benoit;Carmoy, Nathalie;Giraudet, Delphine;Potin, Philippe;Larher, Francois;Bodin, Manuelle
    • Plant Biotechnology Reports
    • /
    • v.3 no.4
    • /
    • pp.347-353
    • /
    • 2009
  • Procedures that induce microspore embryogenesis have been described for a range of Brassica species, but embryo yield remains low for a number of genotypes. We have carried out experiments with the microspores from a weakly responsive line of B. napus to determine the culture conditions that optimize their in vitro embryogenesis by treating them with effectors of ethylene synthesis and action. The results revealed that isolated microspores subjected to an initial heat stress in a medium supplemented with inhibitors of ethylene synthesis such as AVG and $CoCl_2$ exhibited significantly increased embryo yields. This suggested that regulatory effects are exerted by the ethylene produced by the isolated microspores on the early processes of gametogenesis. As a consequence, treatment of microspores with SAM, an ethylene synthesis precursor, or with the ethylene-releasing agent ethephon, led to decreases in embryo yield. A special response to ethylene during the early stages of microspore development was finally shown to occur through experiments where isolated microspores were treated for increasing periods of time with $CoCl_2$. Collectively, our data demonstrated that the induction of embryogenesis induced by heat stress can be enhanced by inhibitors of ethylene biosynthesis.

Effect of Ethylene Adsorbent on Apple Fruit Quality during Storage (사과과실 저장성에 미치는 에틸렌흡착제의 효과)

  • Ahn, Young-Jik;Choi, Jong-Seung;Min, Byung-Hoon;Yi, Kyoung-UK
    • The Journal of Natural Sciences
    • /
    • v.8 no.2
    • /
    • pp.169-173
    • /
    • 1996
  • This experiment was conducted to investigate the effect of ethylene adsorbent removing ethylene gas produced from apple fruits in poly ethylene film bag storage. The treatment of ethylene adsorbent was not effected the change in soluble solids and organic acid content of fruits. The fruit softening was remarkably delayed by the absorbent treatment, and the more amount of it was the more effective. The ethylene evolution and respiration of fruits reduced or decreased by this treatment during storage. The ethylene adsorbent for 'Fuji' apple fruit was effective more than 30g per 10kg fruits.

  • PDF

Synthesis and Physicochemical Properties of Branched Solid Polymer Electrolytes Containing Ethylene Carbonate Group (에틸렌 카보네이트기를 함유하는 가지형 고체 고분자전해질의 합성 및 물리화학적 특성)

  • Kim, Doo-Hwan;Ryu, Sang-Woog
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.4
    • /
    • pp.150-155
    • /
    • 2015
  • In this study polymer electrolytes containing ethylene carbonate group which have a high dielectric constant and poly(ethylene glycol) as branches were prepared by the Williamson reaction between poly(ethylene glycol) methyl ether and block copolymers composed of glycerol-1,2-carbonate and 4-chloromethyl styrene. Interestingly, the highest ionic conductivity of $1.75{\times}10^{-5}S\;cm^{-1}$ was observed from the polymer electrolyte having 7 mol% of ethylene carbonate and the [EO]:[Li] ratio of 32:1. Moreover, it was found that the electrochemical stability of polymer electrolyte was achieved up to 5.5 V because of the presence of ethylene carbonate.