• Title/Summary/Keyword: ethyl 2-cyanoacrylate

Search Result 2, Processing Time 0.016 seconds

Core-shell Poly(D,L-lactide-co-glycolide )/Poly(ethyl 2-cyanoacrylate) Microparticles with Doxorubicin to Reduce Initial Burst Release

  • Lee, Sang-Hyuk;Baek, Hyon-Ho;Kim, Jung-Hyun;Choi, Sung--Wook
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.1010-1014
    • /
    • 2009
  • Monodispersed microparticles with a poly(D,L-lactide-co-glycolide) (PLGA) core and a poly(ethyl 2-cyanoacrylate) (PE2CA) shell were prepared by Shirasu porous glass (SPG) membrane emulsification to reduce the initial burst release of doxorubicin (DOX). Solution mixtures with different weight ratios of PLGA polymer and E2CA monomer were permeated under pressure through an SPG membrane with $1.9\;{\mu}m$ pore size into a continuous water phase with sodium lauryl sulfate as a surfactant. Core-shell structured microparticles were formed by the mechanism of anionic interfacial polymerization of E2CA and precipitation of both polymers. The average diameter of the resulting microparticles with various PLGA:E2CA ratios ranged from 1.42 to $2.73\;{\mu}m$. The morphology and core-shell structure of the microparticles were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The DOX release profiles revealed that the microparticles with an equivalent PLGA:E2CA weight ratio of 1:1 exhibited the optimal condition to reduce the initial burst of DOX. The initial release rate of DOX was dependent on the PLGA:E2CA ratio, and was minimized at a 1:1 ratio.

Preparation and Characteristics of Polymer Additives for Functional Instant Adhesives (기능성 순간접착제용 중합체 첨가제의 제조 및 특성)

  • Ihm, H.J.;Ahn, K.D.;Kim, S.B.;Kim, E.Y.;Han, D.K.
    • Journal of Adhesion and Interface
    • /
    • v.2 no.3
    • /
    • pp.25-32
    • /
    • 2001
  • Ethyl cyanoacrylate (ECA) is used as an instant adhesive, and it can be readily polymerized by moisture in air without any initiator and applied for industrial products and ohome use. However, pure ECA monomer is low-viscosity liquid at room temperature that flows into substrate surface. To thicken the instant adhesive, poly(methyl methacylate)(PMMA) is often added in it commercially. Another disadvantage of instant adhesive polymer is its brittleness In this study, functional polymers including PMMA for an additive of ECA were prepared to increase viscosity of the monomer and flexibility of the adhesive atthe same time The additives, P(MMA-VAc-EVE), were synthesized by radical copolymerization of MMA with VAc and EVE having low glass transition temperature (Tg). The additives were added to ECA to get functional instant adhesives. The chemical structures of the additives and ECA polymers were confirmed by $^1H$ NMR and FTIR, and their physical and mechanical properites were also evaluated. The Tg of the obtained additives decreased with increasing the content of VAc or VAc-EVE, indicating more improved flexibility. In addition, functional instant adhesive containing the additives showed higher bonding strength than that of the existing one.

  • PDF