• Title/Summary/Keyword: ethanol permeance

Search Result 6, Processing Time 0.023 seconds

Preparation and Gas Permeation Characteristics of Polyetherimide Hollow Fiber Membrane for the Application of Hydrogen Separation (수소분리를 위한 Polyetherimide계 고분자 중공사막의 제조 및 기체투과 특성)

  • Kwon, Hyeon Woong;Im, Kwang Seop;Kim, Ji Hyeon;Kim, Seong Heon;Kim, Do Hyeong;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.456-470
    • /
    • 2021
  • In this study, polyetherimide-based hollow fiber membranes were manufactured using the NIPS (nonsolvent induced phase separation) method. THF, Ethanol, and LiNO3 were used as additives to control the morphology of the PEI-hollow fiber membranes. Furthermore, for the development of a high hydrogen separation membrane, the spinning conditions were optimized through the characterization of SEM and gas permeance. As a result, as the content of THF increased, the hydrogen/carbon dioxide selectivity increased. However, the permeance decreased due to the trade-off relationship. When ethanol was added, a finger-like structure was shown, and when LiNO3 was added, a sponge structure was shown. In particular, in the case of a hollow fiber membrane with an optimized PDMS coating layer, the permeance was 40 GPU and the hydrogen/carbon dioxide selectivity was 5.6.

$CO_2$ Separation Using Surface Modified Silica Membrane (표면개질 실리카막을 이용한 $CO_2$선택투과분리)

  • 김성수;최현교;박홍채;김태옥;서봉국
    • Journal of Environmental Science International
    • /
    • v.9 no.4
    • /
    • pp.311-318
    • /
    • 2000
  • To improve $CO_2$pemselectivity, a modified silica membrane was prepared by chemical vapor deposition with tetraethoxysilane(TEOS)-ethanol-water, and TEOS-ethanol-water-HCI solution at 300-$600^{\circ}C$. The silica was effectively deposited in the mesopores of a ${\gamma}$-alumina film coated on a porous $\alpha$-alumina tube by evacuating the reactants through the porous wall. In this membrane, $CO_2$interacts, to some extent, with the pore wall, and $CO_2$/$N_2$selectivity then exceeds the value of the Knudsen diffusion mechanism, while the membrane derived from TEOS alone has no $CO_2$selectivity. The silica membrane prepared from TEOS-ethanol-water-HCI solution showed that $CO_2$permeance was $2.5$\times$10^{-7}mol/s^{-1}.m^{-2}.Pa^{-1} at 30{\circ}C$ and $CO_2$/$N_2$selectivity was approximately 3. The $CO_2$permeance and selectivity was improved by enlarging the surface diffusion with modification of chemical affinity of the silica pores.

  • PDF

Preparation and Characterization of Nanofiltration Membrane for Recycling Alcoholic Organic Solvent (알코올성 유기용매 재활용을 위한 나노여과막의 제조와 특성평가)

  • Kim, Seong Heon;Im, Kwang Seop;Kim, Ji Hyeon;Koh, Hyung Chul;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.31 no.3
    • /
    • pp.228-240
    • /
    • 2021
  • The organic solvent robust polybenzimidazole (PBI) membranes were prepared as organic solvent nanofiltration (OSN) membrane for the recycling of alcoholic solvents using non-solvent induced phase separation with different dope solution concentration and coagulant composition of water/ethanol mixtures to control the membrane morphology and permeation performance. Investigation on crosslinking of polybenzimidazole indicated that the membrane crosslinked with dibromoxylene (DBX) had enough mechanical strength and solvent resistance to be applied as a OSN membranes. The crosslinked PBI membrane prepared by more than 20wt% dope concentration coagulated in water showed a rejection of > 90% to Congo Red (MW of 696.66 g/mol) while pure ethanol permeances was more than 22.5 LMH/bar at 5 bar. Investigation on coagulant composition indicated that ethanol permeance through crosslinked PBI OSN membrane increased with increasing of ethanol concentration in water/ethanol mixture coagulants.

Preparation and Characterization of Organic Solvent-resistant Polybenzimidazole Membranes (용매저항성 폴리벤즈이미다졸 분리막의 제조 및 특성평가)

  • Jeong, Moon Ki;Nam, Sang Yong
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.420-426
    • /
    • 2017
  • Recently, solvent-resistant nanofiltration membranes have been studied for the separation of solvents or solutes using a molecular weight cut-off system of the polymer which is resistant to a specific solvent. Required conditions for these membranes must have are excellent physical properties and solvent resistance. Polybenzimidazole, which is known to be one of the most heat-resistant commercially available polymers, has an excellent inherent solvent resistance and it is even insoluble in stronger organic solvents when cross-linked. Therefore, in this study, the applicability of polybenzimidazole as a solvent resistant nanofiltration membrane was discussed. The membrane was fabricated using the non-solvent induced phase separation method and showed a suitable morphology as a nanofiltration membrane confirmed by field emission scanning electron microscopy. In addition, the permeance of the solvent in the presence or absence of cross-linking was investigated and the stability was also confirmed through long operation. The permeance test was carried out with five different solvents: water, ethanol, benzene, N, N-dimethylacetamide (DMAc) and n-methyl-2-pyrrolidone (NMP); each of the initial flux was $6500L/m^2h$ (water, 2 bar), $720L/m^2h$ (DMAc, 5 bar), $185L/m^2h$ (benzene, 5 bar), $132L/m^2h$ (NMP, 5 bar), $65L/m^2h$ (ethanol, 5 bar) and the pressure between 2 and 5 bar was applied depending on the type of membrane.

Designing Modified Atmosphere Packaging for Persimmon (Diospyros kaki cv. Fuyu) Fruit Based on Respiration Modelling (단감의 최적 Modified Atmosphere포장 규격 설정)

  • Ahn, Gwang-Hwan;Choi, Seong-Jin;Lee, Dong-Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.13 no.2
    • /
    • pp.67-73
    • /
    • 2007
  • A respiration rate analysed by enzyme kinetics-based respiration model and gas permeability data of LDPE film were applied to design the optical modified atmosphere (MA) packaging condition of persimmon (Diospyros kaki cv. Fuyu) fruits. The fruit quality rapidly decreases due to physiology disorder such as softening and peel blackening. $O_2$ permeance ($Q_{O2}$ in $ml{\cdot}hr^{-1}{\cdot}atm^{-1}{\cdot}m^{-2}$) and $CO_2$ performance ($Q_{CO2}$ in $ml{\cdot}hr^{-1}{\cdot}atm^{-1}{\cdot}m^{-2}$) of low density polyethylene (LDPE) film samples were measured at $0^{\circ}C$ and described as function of thickness (L in ${\mu}m$) as $Q_{O2}=(2540{\times}1/L)-16$, and $Q_{CO2}=(13742{\times}1/L)-70$, respectively. MA package containing single persimmon fruit of 225g was designed and tested experimentally at $0^{\circ}C$ by using LDPE films. Package atmospheres predicted from the relationship of $O_2$, $CO_2$ and $N_2$ balances on the packages was in good agreement with those obtained experimentally. Physiology disorder occurrence was the lowest at 52 ${\mu}m$ package that attained optimum gas condition ($O_2$ 2.8% and $CO_2$ 5.4%). The computer simulation was found to be effective to help to design the optimum MA packaging condition of individual persimmon fruit.

  • PDF

Effect of Crystal Particle Deposition on Morphology of Zeolite Membrane and its Separation Performance (결정입자 도포가 제올라이트 막 구조 및 분리성능에 미치는 영향)

  • Lee, Yong-Taek;Jeong, Heon-Kyu;Jeong, Dong-Jae;Yun, Mi-Hye;Ahn, Hyo-Seong
    • Membrane Journal
    • /
    • v.18 no.3
    • /
    • pp.198-205
    • /
    • 2008
  • A novel technology for homogeneous deposition of zeolite particles on a porous support was developed so that those particles played a seeding role for the growth of zeolite crystals. After the particles were dispersed in water, the aqueous solution was 134 through the bore of a porous tubular support. By keeping the other side of the support in a vacuum, the aqueous solution passed through the pores of the support, leading the particles to be homogeneously deposited on the support. The amount of the deposited particles was investigated by changing the following operating parameters: a particle concentration in the solution, a time for deposition, and the feeding rate of the solution. The amount of the deposited particles increased from 0.0019 g to 0.0208 g as the concentration of the particles was changed from 0.01 wt% to 0.3 wt%, while the feeding rate and the deposition time were kept to 100 mL/min and 4 min, respectively. As the deposition time was varied from 1 min to 4 min, the deposition amount increased from 0.0004g to 0.0019g at the typical condition of the rest parameters. Also, it was observed that the deposited weight increased from 0.0029 g to 0.01 g as the feeding rate increased from 100 mL/min to 300 mL/min. However, the total permeance of water and ethanol decreased through the zeolite membrane as the deposited weight increased.