• Title/Summary/Keyword: ethanol addition

Search Result 1,498, Processing Time 0.025 seconds

Determination of carbaryl in aqueous solution by fluorescence spectrometry (형광분광법을 이용한 수용액 중의 carbaryl의 정량)

  • Kim, Wook Hyun;Lee, Sang Hak
    • Analytical Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.307-312
    • /
    • 2009
  • A spectrofluorimetric methods has been developed for the determination of carbaryl in an aqueous solution. The effects of excitation wavelength, concentration of surfactant, concentration of ethanol as cosurfactant and emission wavelength on the fluorescence intensity were investigated to find the optimum experimental conditions to determine carbaryl. The emission intensity of the carbayl was increased with addition of sodium dodecyl sulfate (SDS) as a surfactant. The emission intensity of the carbaryl was further increased with addition of ethanol as a co-surfactant. The optimum conditions were 281 nm for excitation wavelength, $1.0{\times}10^{-2}mol/L$ SDS, 20% (v/v) ethanol and 349 nm for emission wavelength. Under the optimum conditions, the emission intensity increased with the carbaryl concentration in the range of $5{\times}10^{-7}$ to $1.0{\times}10^{-4}mol/L$ with a detection limit ($3{\sigma}$) of $1.1{\times}10^{-8}mol/L$. The resulting correlation coefficient of the working curve was 0.9996.

Isolation of Strains that Produce Ethanol Efficiently from Cellulosic Materials (섬유질 가수분해물로부터 효율적인 Ethanol 생산균주의 분리)

  • 고학룡;문종상;성낙계;심기환
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.4
    • /
    • pp.319-324
    • /
    • 1991
  • Three strains able to efficiently produce ethanol from cellulosic hydrolysates were isolated from soil samples by enrichment culture in liquid saccharified wheat bran medium. The profiles of physiological and biochemical properties of two yeasts KM-09 and KM-402 and a bacterium Hg-225 were almost identical from those of Candida sp. and Klebsiella sp., respectively. Strains KM-09 and HG-225 used xylose and cellobiose as fermentable sugars, and HG-225 had a wide range of sugar utilization for ethanol fermentation. The optimal pH and temperature for growth of KM-09, KM-402 and HG-225 were 5.8, 5.6 and 6.8 and 32t, $30^{\circ}C$~ and $38^{\circ}C$, respectively. During the ethanol fermentation in saccharified wheat bran by the isolated strains, optimal temperature for ethanol production was more or less higher than those for growth, and addition of 0.2% (w/v) $MgSO_4$, into the medium enhanced ethanol productivity. Of the three strains ethanol content of KM-09 was the highest with about 2.3% (v/v), and ethanol production rate of HG-225 was faster than the others and maximum productivity was after 4 days. KM-09 (1.42% v/v) and HG-225 (1.05%, vlv) produced ethanol from 4% (wIv) xylose but growth rate was slower than on glucose. Otherwise KM-402 showed the highest ethanol productivity on glucose, but no ethanol was detected on xylose and cellobiose.

  • PDF

Effects of ethanol-induced p42/44 MAPkinase activity on IGF system in primary cultured rat hepatocytes (흰쥐의 배양된 간세포에서 ethanol에 의해 유도된 p42/44 MAPkinase가 IGF system에 미치는 효과)

  • Lee, Sun-Mi;Kim, Jong-Hoon;Kang, Chang-Won
    • Korean Journal of Veterinary Research
    • /
    • v.46 no.4
    • /
    • pp.315-322
    • /
    • 2006
  • Ethanol abuse is associated with liver injury, neurotoxicity, modulation of immune responses, and increased risk for cancer, whereas moderate ethanol consumption exerts protective effects against liver injury. However, the underlying signal transduction mechanisms of insulin-like growth factors (IGFs) which play an important regulatory role in various metabolism mechanisms are not well understood. We investigated the effects of ethanol-induced p42/44 activity on IGF-I secretion, IGF-I receptor and IGFBP-1 secretion using radioimmunoassay and western blotting in primary cultured rat hepatocytes. The p42/44 activity, IGF-I secretion and IGF-I receptor activity significantly accelerated compared to control at 10 and 30 min after 200 mM ethanol treatment, but then it became suppressed at 180 min. In contrast, IGFBP-1 secretion was inhibited compared to control at 30 min after 200 mM ethanol treatment, but increased at 180 min. The IGF-I secretion, IGF-I receptor and p42/44 activity at 30 min after 200 mM ethanol treatment accelerated with increasing ethanol concentration but IGFBP-1 secretion inhibited (p<0.05). The increased IGF-I secretion, inhibited IGFBP-1 secretion and IGF-IR activity by ethanol-induced temporal p42/44 activity at 30 min after ethanol treatment was blocked by treatment with PD98059. Alcohol dehydrogenase (ADH) inhibitor, 4-methylpyramazole blocked the changes of IGF-I secretion, IGFBP-1 secretion, and IGF-IR activity by ethanol-induced p42/44 activity at 30 and 180 min. Taken together, these results suggest that ethanol is involved in the modulation of IGF-I and IGFBP-1 secretion and IGF-IR activity by p42/44 activity in primary cultured rat hepatocytes. In addition, changing of p42/44 activity by ethanol was caused with ADH.

Effect of Air-fuel Ratio on Combustion and Emission Characteristics in a Spark Ignition Engine Fueled with Bio-ethanol (공연비 변화가 바이오에탄올 연료 스파크 점화기관의 연소 및 배출물 특성에 미치는 영향)

  • Kim, Dae-Sung;Yoon, Seung-Hyun;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • The purpose of this paper is to investigate the effect of air-fuel ratio on the combustion and emissions characteristics of spark ignition (SI) gasoline engine fueled with bio-ethanol. A 1.6L SI engine with 4 cylinders was tested on EC dynamometer. In addition, lambda sensor and lambda meter were connected with universal ECU to control the lambda value which is varied from 0.7 to 1.3. The engine performance and combustion characteristics of bio-ethanol fuel were compared to those obtained by pure gasoline. Furthermore, the exhaust emissions such as carbon monoxide (CO), unburned hydrocarbon (HC), oxides of nitrogen ($NO_X$) and carbon dioxide ($CO_2$) were measured by emission analyzers. The results showed that the brake torque and cylinder pressure of bio-ethanol fuel were slightly higher than those of gasoline fuel. Brake specific fuel consumption (BSFC) of bio-ethanol was increased while brake specific energy consumption (BSEC) was decreased. The exhaust emissions of bio-ethanol fuel were lower than those of gasoline fuel under overall experimental conditions. However, the specific emission characteristics of the engine with bio-ethanol fuel were influenced by air-fuel ratio.

Effect of Diets Supplemented with Pharbitis Seed Powder on Serum and Hepatic Lipid Levels, and Enzyme Activities of Rats Administered with Ethanol Chronically

  • Oh, Suk-Heung;Cha, Youn-Soo
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.166-171
    • /
    • 2001
  • The levels of $\gamma$-aminobutyric acid (GAGA) have been analyzed from pharbitis seeds by an AccQ-Tag amino acid analysis procedure. The GABA level of the pharbitis seeds was 125 nmole per gram fresh weight. To investigate the effects of pharbitis seed diets on serum and hepatic lipid levels, as well as enzyme activities of rats administered with ethanol chronically, Sprague-Dawley male rats were fed with either a AIN-76 diet (control), a control diet plus ethanol, a control plus pharbitis seed diet, or a control plus pharbitis seed diet plus ethanol for 30 days. Pharbitis seed diets decreased the serum total cholesterol, triglyceride, LDL-cholesterol, and $\gamma$-GTP levels that were increased by the chronic ethanol administration. In addition, pharbitis seed diets decreased the liver triglyceride and total lipid levels that were increased by the ethanol administration. However, ethanol metabolism was not retarded by the pharbitis seed supplemented diets. The present Endings, plus previous data showing the differences in the effects of cabbage diets having a high or a low level of GABA on the lipid levels and the enzyme activities of rats (Cha and Oh [2000] J. Korean Soc. Food Sci. Nutr. 29, 500-505), raise the possibility that GABA in plants could have a nutraceutical role in the recovery of chronic alcohol-related diseases.

  • PDF

Improvement of Ethanol Yield by Addition of Acetic Acid and Acetatdehyde in Ethanol Fermentation (에탄올 발효에서 초산 및 아세트알데히드 첨가에 의한 에탄올 수율의 증진)

  • 김진현;여주상유영제
    • KSBB Journal
    • /
    • v.10 no.4
    • /
    • pp.370-373
    • /
    • 1995
  • The major by-products in ethanol fermentation by Saccharomyces cerevisiae were glycerol, acetaldehyde, acetic acid, lactic acid, and formic acid. The effects of these by-products on the cell growth and ethanol production were studied. By adding acetaldehyde or acetic acid in the fermentation broth, the cell growth decreased while the ethanol production increased. But glycerol and lactic acid had nearly no effects on the cell growth and the ethanol production. Acetic acid and acetaldehyde inhibited the cell growth by diminishing the growth rate as well as by prolonging the lag phase. The ethanol yield increased with the elevation of concentrations of acetic acid and acetaldehyde in the fermentation broth. The maximum ethanol yield was obtained for $3g/\ell$ acetic acid and $2g/\ell$ acetaldehyde, respectively.

  • PDF

Causal Relationship among Bioethanol Production, Corn Price, and Beef Price in the U.S.

  • Seok, Jun Ho;Kim, GwanSeon;Kim, Soo-Eun
    • Environmental and Resource Economics Review
    • /
    • v.27 no.3
    • /
    • pp.521-544
    • /
    • 2018
  • This paper investigates the impact of ethanol mandate on the price relationship between corn and beef using the monthly time-series data from January 2003 through December 2013. In addition, we examine the non-linearity in ethanol, corn, and beef markets. Based on the threshold cointegration test, we find the symmetric relationship in pairs with ethanol production-corn price and ethanol production-beef price whereas there is the asymmetric relationship between prices of corn and beef. Employing the threshold vector error correction and vector error correction models, we also find that the corn price in the U.S is caused by both ethanol production and beef price in a long-run when the beef price is relatively high. On the other hand, the corn price does not cause both ethanol production and beef price in the long run. Findings from this study imply that demanders for corn such as ethanol and beef producers have price leadership on corn producers.

Controversial Effect of Ethanol Irrespective of Kinases Inhibition on the Agonist-Dependant Vasoconstriction

  • Je, Hyun-Dong;Kim, Hyeong-Dong;Park, June-Hong
    • Biomolecules & Therapeutics
    • /
    • v.20 no.3
    • /
    • pp.352-356
    • /
    • 2012
  • The present study was undertaken to determine whether ethanol influences on the agonist-induced vascular smooth muscle contraction and, if so, to investigate the related mechanism. The measurement of isometric contractions using a computerized data acquisition system was combined with molecular experiments. Ethanol significantly inhibited thromboxane $A_2$ mimetic-induced contraction with intact endothelial function, but there was no relaxation on thromboxane $A_2$ mimetic U-46619-induced contraction irrespective of endothelium suggesting that the pathway such as Rho-kinase activation, $Ca^{2+}$ entry or thin filament regulation was not affected. In addition, ethanol didn't decrease thromboxane $A_2$ mimetic-induced increase of phospho-myosin phosphatase targeting subunit protein 1 (pMYPT1) or pERK1/2. Interestingly, ethanol didn't inhibit significantly phorbol ester-induced contraction in denuded muscles suggesting that thin filament regulation is less important on the ethanol-induced regulation in the muscle than endothelial NO synthesis. In conclusion, this study provides the evidence and possible related mechanism concerning the effect of ethanol on the agonist-dependent contraction in rat aortic rings with regard to endothelial function.

Metabolic Engineering of the Thermophilic Bacteria, Bacillus stearothermophilus, for Ethanol Production

  • Jo, Gwang-Myeong;Ingram, Lonnie O.
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.56-59
    • /
    • 2000
  • Thermophilic bacterium, Bacillus stearothermophilus NUB3621, was engineered to produce ethanol from glucose by introducing cloned thermostable pyruvate decarboxylase and alcohol dehydrogenase genes. A novel promoter sequence was screened and used for the enhancement of these two enzymes. Successful redirection of metabolic flux into ethanol was obtained. In addition, gene expression profiling using Bacillus subtilis DNA microarray was analyzed to overcome the intrinsic low glucose utilization of B.stearothermophilus. Many known and unknown genes were identified to be up or down regulated under glucose-containing media.

  • PDF

Bioethanol Production by using Wasted MDF (폐압축보드를 이용한 바이오에탄올 생산)

  • Kang, Yang-Rae;Hwang, Jin-Sik;Bae, Ki-Han;Cho, Hoon-Ho;Lee, Eun-Jeong;Cho, Young-Son;Nam, Ki-Du
    • KSBB Journal
    • /
    • v.31 no.1
    • /
    • pp.73-78
    • /
    • 2016
  • The aim of this study attempted to verify the possibility of bioethanol production using wasted medium density fiberboard (wMDF). In order to produce bioethanol from wood cellulosic materials must be carried out the process of pretreatment, saccharification, fermentation and distillation. First, the wMDF was pretreated using sodium chlorite and pretreated wMDF was prepared to 8% slurry and then slurry was saccharified with the commercial enzyme (Cellic CTec3). The fermentable sugar and pH of saccharified substrate were about 5.5% glucose and 4.4, respectively. Herein we compared the results of ethanol yield according to the nutrients added or without addition to increase ethanol yield. Ethanol fermentation was finished in about 24 hours, but it was delayed in experimental group without nutrients. Ethanol content and fermentation ratio of the final fermented mash prepared by utilizing jar fermenter was 25.40 g/L and 86.64%, respectively. At this time, the maximum ethanol productivity was confirmed as 1.78 g/Lh (ethanol content 21.38 g/L, 12 h), and the overall ethanol productivity was 1.05 g/Lh (ethanol content 25.27 g/L, 24 h). Using fermented liquid we could produced bioethanol 95.37% by continuous distillator packed with copper element in laboratory scale. These results show that wMDF has a potential valuable for bioethanol production.