• Title/Summary/Keyword: estrogen receptor (ER)

Search Result 243, Processing Time 0.03 seconds

ARYL HYDROCARBON- AND ESTROGEN-MEDIATED SIGNALS POSSIBLY CROSS TALK TO REGULATE CYP1A1 GENE EXPRESSION

  • Joung, Ki-Eun;Kim, Yeo-Woon;Min, Kyung-Nan;Sheen, Yhun-Yhong
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.112-112
    • /
    • 2001
  • 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental toxin that activates the aryl hydrocarbon receptor (AhR) and disrupts multiple endocrine signaling pathways by enhancing ligand metabolism, altering hormone synthesis, down regulating receptor levels, and interfering with gene transcription. And TCDD-mediated gene transactivation via the AhR has been shown to be dependent upon estrogen receptor (ER) expression in human breast cancer cells. In the present study, we have examined the effect of natural estrogen, phytoestrognes and environmental estrogens on the regulation of CYP1A1 gene expression in MCF-7 human breast cancer cell line. that ER and AhR are co-expressed. pCYP1A1 -luc reporter gene was transiently transfected into MCF-7 cells. These cells were treated with various chemicals and then luciferase assay was carried out. 17be1a-estradiol significantly inhibited TCDD stimulated luciferase activity dose dependently and this inhibition was partially recovered by concomitant treatment of tamoxifen. 17beta-estradiol metabolites, 2-hydroxyestradiol and 16alpha-estriol resulted in less potent inhibitory effect than estradiol and synthetic estrogen, diethylstilbestrol (DES) showed no effect on CYP1A1 gene expression. This study demonstrated that estrogen down-regulated TCDD stimulated CYP1A1 expression via ER mediation. And we have found out that several flavonoids such as genistein, kaempferol, daidzein, naringenin, and alkylphenols such as nonylphenol, 4-octylphenol and resveratrol also inhibited TCDD induced CYP1A1 expression like estrogen.

  • PDF

SH2D4A regulates cell proliferation via the ERα/PLC-γ/PKC pathway

  • Li, Tingting;Li, Wei;Lu, Jingyu;Liu, Hong;Li, Yinghui;Zhao, Yanyan
    • BMB Reports
    • /
    • v.42 no.8
    • /
    • pp.516-522
    • /
    • 2009
  • SH2D4A, comprising a single SH2 domain, is a novel protein of the SH2 signaling protein family. We have previously demonstrated SH2D4A is expressed ubiquitously in various tissues and is located in the cytoplasm. In this study we investigated the function of SH2D4A in human embryonic kidney (HEK) 293 cells using interaction analysis, cell proliferation assays, and kinase activity detection. SH2D4A was found to directly bind to estrogen receptor $\alpha$ (ER$\alpha$), and prevent the recruitment of phospholipase C-$\gamma$ (PLC-$\gamma$) to ER$\alpha$. Moreover, we observed its inhibitory effects on estrogen-induced cell proliferation, involving the protein kinase C (PKC) signaling pathway. Together, these findings suggested that SH2D4A inhibited cell proliferation by suppression of the ER$\alpha$/PLC-$\gamma$/PKC signaling pathway. SH2D4A may be useful for the development of a new anti-cancer drug acting as an ER signaling modulator.

CpG Island Methylation Profile of Estrogen Receptor Alpha in Iranian Females with Triple Negative or Non-triple Negative Breast Cancer: New Marker of Poor Prognosis

  • Ramezani, Fatemeh;Salami, Siamak;Omrani, Mir Davood;Maleki, Davood
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.2
    • /
    • pp.451-457
    • /
    • 2012
  • One decade early onset of the breast cancer in Iranian females was reported but the basis of the observed difference has remained unclear and difference in gene silencing by epigenetic processes is suggested. Hence, this study was sought to map the methylation status of estrogen receptor (ER) gene CpG islands and its impact on clinicopathological factors of triple negative and non-triple negative ductal cell carcinoma of the breast in Iranian females. Surgically resected formalin-fixed paraffin-embedded breast tissues from sixty Iranian women with confirmed invasive ductal carcinoma were assessed by methylation-specific PCR using primer sets encompassing some of the 29 CpGs across the ER gene CpG island. The estrogen and progesterone receptors, Her-$2^+$ overexpression, and nuclear accumulation of P53 were examined using immunohistochemistry (IHC). Methylated ER3, ER4, and ER5 were found in 41.7, 11.3, and 43.3% of the samples, respectively. Significantly higher methylation of ER4 was found in the tumors with nuclear accumulation of P53, and significantly higher methylation of ER5 was found in patients with lymph node involvement and tumor with bigger size or higher grades. Furthermore, significantly higher rate of ER5 methylation was found in patients with Her-$2^+$ tumors and in postmenopausal patients with $ER^-$, $PgR^-$, or $ER^-/PgR^-$ tumors. However, no significant difference in ERs methylation status was found between triple negative and non-triple negative tumors in pre- and postmenopausal patients. Findings revealed that aberrant hypermethylation of the ER-alpha gene frequently occurs in Iranian women with invasive ductal cell carcinoma of the breast. However, methylation of different CpG islands produced a diverse impact on the prognosis of breast cancer, and ER5 was found to be the most frequently methylated region in the Iranian women, and could serve as a marker of poor prognosis.

Catechol Estrogen 4-Hydroxyestradiol is an Ultimate Carcinogen in Breast Cancer

  • Park, Sin-Aye
    • Biomedical Science Letters
    • /
    • v.24 no.3
    • /
    • pp.143-149
    • /
    • 2018
  • Excessive exposure to estrogens is the most important risk factor for the development of hormone-sensitive cancers, especially breast cancer. Estrogen stimulates the expression of genes and proteins involved in cell proliferation by binding to estrogen receptor (ER). Another possible mechanism of ER-independent carcinogenicity of estrogens is based on the hydroxylation of estradiol resulting in the formation of catechol estrogens. Catechol estrogen 4-hydroxyestradiol ($4-OHE_2$) is further oxidized to catechol estrogen-3,4-quinones, the major carcinogenic metabolites of estrogens. Evidence increasingly supports the critical role of $4-OHE_2$ in hormonal carcinogenesis via DNA adduct formation or production of reactive oxygen species, which finally contribute to the transformation of normal mammary epithelial cells and the enhanced growth of breast cancer cells. It is also reported that the level of $4-OHE_2$ or its quinones is highly up-regulated in urine or tissues of breast cancer patients. Thus, we highlight the oncogenic roles of $4-OHE_2$ in catechol estrogen-induced breast carcinogenesis.

Mechanisms of Inhibitory Ah Receptor-Estrogen Receptor Crosstalk in Breast Cancer Cells

  • Safe, Stephen H.
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.23-23
    • /
    • 2003
  • 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and other aryl hydrocarbon (AhR) ligands suppress 17${\beta}$-estradiol (E)-induced responses in the rodent uterus and mammary tumors and in human breast cancer cells. Treatment of ZR-75, T47D and MCF-7 human breast cancer cells with TCDD induces proteasome-dependent degradation of endogenous estrogen receptor ${\alpha}$ (ER${\alpha}$).(omitted)

  • PDF

PC12 and Cortical Neuron cell Death by Bisphenol A Through ERK Signal Pathway: Role of Estrogen-Receptor $\beta$

  • Lee, Yoot-Mo;Seong, Min-Je;Lee, Sun-Young;Lee, Sang-Min;Kim, Tae-Seong;Han, Soon-Young;Yoo, Han-Soo;Lee, Myung-Koo;Oh, Ki-Wan
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.135-135
    • /
    • 2003
  • Bisphenol A (BPA) mimics estrogen and its activity is one third to one quarter that of estradiol. BPA, an ubiquitous environmental contaminent has been shown to cause development reproductive toxicity and carcinogenic effect. BPA may do physiological action through ER${\alpha}$ and ER${\beta}$ which are expressed in central nerve system.(omitted)

  • PDF

Tamoxifen Resistance in Breast Cancer

  • Chang, Min-Sun
    • Biomolecules & Therapeutics
    • /
    • v.20 no.3
    • /
    • pp.256-267
    • /
    • 2012
  • Tamoxifen is a central component of the treatment of estrogen receptor (ER)-positive breast cancer as a partial agonist of ER. It has been clinically used for the last 30 years and is currently available as a chemopreventive agent in women with high risk for breast cancer. The most challenging issue with tamoxifen use is the development of resistance in an initially responsive breast tumor. This review summarizes the roles of ER as the therapeutic target of tamoxifen in cancer treatment, clinical values and issues of tamoxifen use, and molecular mechanisms of tamoxifen resistance. Emerging knowledge on the molecular mechanisms of tamoxifen resistance will provide insight into the design of regimens to overcome tamoxifen resistance and discovery of novel therapeutic agents with a decreased chance of developing resistance as well as establishing more efficient treatment strategies.

In vitro Screening of Medicinal Plants with Estrogen Receptor Modulation Activity (생약의 여성호르몬 수용체 조절 활성 검색)

  • Lee, Chang-Min;Kang, Se-Chan;Oh, Joa-Sub;Choi, Han;Li, Xue-Mei;Lee, Jae-Hyun;Lee, Mi-Hyun;Choung, Eui-Su;Kawk, Joung-Hwan;Zee, Ok-Pyo
    • Korean Journal of Pharmacognosy
    • /
    • v.37 no.1 s.144
    • /
    • pp.21-27
    • /
    • 2006
  • Yeast based estrogenicity assay is the simplest and useful for the assay and the discovery of novel estrogenic substances in natural specimens, The estrogen receptor(ER) modulation activity of 50% EtOH extracts of 101 traditional medicinal herbs was assessed using a recombinant yeast assay system with both a human estrogen receptor expression plasmid and a receptor plasmid. Among them, 14 species proved to be active. Pureariae Flos (flower of Puerraria thunbergiana BENTH.) had the highest estrogenic relative potency$(7.75{\times}10^{-3})$ $(EC_{50}=9.39\;{\mu}g/ml)$. The $EC_{50}$ value of $17{\beta}-estradiol$ used as the positive control was $0.073\;{\mu}g/ml)$ (Relative Potency=1.00). There results demonstrated that some of the traditional medical herb may be useful in the therapy of estrogen replacement.

Molecular Effects of Genistein on Proliferation and Apoptosis of MCF-7 Cell Line

  • Shin, Hye-Jin;Oh, Young-Jin;Hwang, Seung-Yong;Yoo, Young-Sook
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.1
    • /
    • pp.15-20
    • /
    • 2006
  • Genistein is a potent, plant-derived isoflavone that displays estrogenic activity at low concentrations but inhibits proliferation at high amounts. However, the molecular mechanism of genistein is not completely understood. In the present study, the biphasic effects (estrogenic and antiestrogenic activity) of genistein on the growth of MCF-7 cells were identified. Genistein within a low range of concentration, $1-10\;{\mu}M$, stimulated proliferation, while $50-100\;{\mu}M$ caused apoptotic cell death. Additionally, genistein at a low concentration induced estrogen receptor (ER)-mediated gene expression and ER phosphorylation. When pre-treated with PD98059, an MEK inhibitor, ER-mediated gene expression and ER phosphorylation by genistein were noticeably increased. However, the increased gene expression and phosphorylation did not enhance cell proliferation. Moreover, it was observed that ER-mediated signaling performs an important role in the MAPK pathway. The proliferation and apoptosis in genistein-treated MCF-7 cells were partially dependent on the Bcl-2 level. The addition of IC1 182, 780, an estrogen receptor antagonist, inhibited Bcl-2 expression induced by genistein. This study suggests that there is a close relationship between Bcl-2 and the ER signaling pathways in MCF-7 cells.

Korean Red Ginseng inhibits apoptosis in neuroblastoma cells via estrogen receptor ${\beta}$-mediated phosphatidylinositol-3 kinase/Akt signaling

  • Nguyen, Cuong Thach;Luong, Truc Thanh;Kim, Gyu-Lee;Pyo, Suhkneung;Rhee, Dong-Kwon
    • Journal of Ginseng Research
    • /
    • v.39 no.1
    • /
    • pp.69-75
    • /
    • 2015
  • Background: Ginseng has been shown to exert antistress effects both in vitro and in vivo. However, the effects of ginseng on stress in brain cells are not well understood. This study investigated how Korean Red Ginseng (KRG) controls hydrogen peroxide-induced apoptosis via regulation of phosphatidylinositol-3 kinase (PI3K)/Akt and estrogen receptor (ER)-${\beta}$ signaling. Methods: Human neuroblastoma SK-N-SH cells were pretreated with KRG and subsequently exposed to $H_2O_2$. The ability of KRG to inhibit oxidative stress-induced apoptosis was assessed in MTT cytotoxicity assays. Apoptotic protein expression was examined byWestern blot analysis. The roles of ER-${\beta}$, PI3K, and p-Akt signaling in KRG regulation of apoptosis were studied using small interfering RNAs and/or target antagonists. Results: Pretreating SK-N-SH cells with KRG decreased expression of the proapoptotic proteins p-p53 and caspase-3, but increased expression of the antiapoptotic protein BCL2. KRG pretreatment was also associated with increased ER-${\beta}$, PI3K, and p-Akt expression. Conversely, ER-${\beta}$ inhibition with small interfering RNA or inhibitor treatment increased p-p53 and caspase-3 levels, but decreased BCL2, PI3K, and p-Akt expression. Moreover, inhibition of PI3K/Akt signaling diminished p-p53 and caspase-3 levels, but increased BCL2 expression. Conclusion: Collectively, the data indicate that KRG represses oxidative stress-induced apoptosis by enhancing PI3K/Akt signaling via upregulation of ER-${\beta}$ expression.