• Title/Summary/Keyword: estimation of degree of freedom

Search Result 122, Processing Time 0.025 seconds

Vision-based Navigation for VTOL Unmanned Aerial Vehicle Landing (수직이착륙 무인항공기 자동 착륙을 위한 영상기반 항법)

  • Lee, Sang-Hoon;Song, Jin-Mo;Bae, Jong-Sue
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.226-233
    • /
    • 2015
  • Pose estimation is an important operation for many vision tasks. This paper presents a method of estimating the camera pose, using a known landmark for the purpose of autonomous vertical takeoff and landing(VTOL) unmanned aerial vehicle(UAV) landing. The proposed method uses a distinctive methodology to solve the pose estimation problem. We propose to combine extrinsic parameters from known and unknown 3-D(three-dimensional) feature points, and inertial estimation of camera 6-DOF(Degree Of Freedom) into one linear inhomogeneous equation. This allows us to use singular value decomposition(SVD) to neatly solve the given optimization problem. We present experimental results that demonstrate the ability of the proposed method to estimate camera 6DOF with the ease of implementation.

Experimental identification of the six DOF C.G.S., Algeria, shaking table system

  • Airouche, Abdelhalim;Bechtoula, Hakim;Aknouche, Hassan;Thoen, Bradford K.;Benouar, Djillali
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.137-154
    • /
    • 2014
  • Servohydraulic shaking tables are being increasingly used in the field of earthquake engineering. They play a critical role in the advancement of the research state and remain one of the valuable tools for seismic testing. Recently, the National Earthquake Engineering Research Center, CGS, has acquired a 6.1m x 6.1 m shaking table system which has a six degree-of-freedom testing capability. The maximum specimen mass that can be tested on the shaking table is 60 t. This facility is designed specially for testing a complete civil engineering structures, substructures and structural elements up to collapse or ultimate limit states. It can also be used for qualification testing of industrial equipments. The current paper presents the main findings of the experimental shake-down characterization testing of the CGS shaking table. The test program carried out in this study included random white noise and harmonic tests. These tests were performed along each of the six degrees of freedom, three translations and three rotations. This investigation provides fundamental parameters that are required and essential while elaborating a realistic model of the CGS shaking table. Also presented in this paper, is the numerical model of the shaking table that was established and validated.

On the influence of strong-ground motion duration on residual displacement demands

  • Ruiz-Garcia, Jorge
    • Earthquakes and Structures
    • /
    • v.1 no.4
    • /
    • pp.327-344
    • /
    • 2010
  • This paper summarizes results of a comprehensive analytical study aimed at evaluating the influence of strong ground motion duration on residual displacement demands of single-degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF) systems. For that purpose, two sets of 20 earthquake ground motions representative of short-duration and long-duration records were considered in this investigation. While the influence of strong ground motion duration was evaluated through constant-strength residual displacement ratios, $C_r$, computed from the nonlinear response of elastoplastic SDOF systems, its effect on the amplitude and height-wise distribution of residual drift demands in MDOF systems was studied from the response of three one-bay two-dimensional generic frame models. In this investigation, an inelastic ground motion intensity measure was employed to scale each record, which allowed reducing the record-to-record variability in the estimation of residual drift demands. From the results obtained in this study, it was found that long strong-motion duration records might trigger larger median $C_r$ ratios for SDOF systems having short-to-medium period of vibration than short strong-motion duration records. However, taking into account the large record-to-record variability of $C_r$, it was found that strong motion duration might not be statistically significant for most of the combinations of period of vibration and levels of lateral strength considered in this study. In addition, strong motion duration does not have a significant influence on the amplitude of peak residual drift demands in MDOF systems, but records having long strong-motion duration tend to increase residual drift demands in the upper stories of long-period generic frames.

A Dynamic Analysis of Wheel Forces distribution of KTX locomotive for Interaction of PSC box Girder Bridge (PSC 박스거더 교량의 상호작용에 의한 KTX 동력차의 윤하중 분포 해석)

  • Oh, Soon-Taek;Lee, Dong-Jun;Sim, Young-Woo;Yun, Jun-Kwan;Kim, Han-Su
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.680-689
    • /
    • 2011
  • A dynamic analysis procedure is developed to provide a comprehensive estimation of the dynamic response spectrum for locomotive's wheels running over a Pre-Stressed Concrete (PSC) box girder bridge on the Korea high speed railway. The wheel force spectrum with the bridge behavior are analyzed as the dynamic procedure for various running speeds (50~450km/h). The high-speed railway locomotive (KTX) is used as 38-degree of freedom system. Three displacements(vertical, lateral, and longitudinal) and three rotational components (pitching, rolling, and yawing). For one car-body and two bogies as well as five movements except pitching rotation components for four wheel axes forces are considered in the 38-degree of freedom model. Three dimensional frame element is used to model of the PSC box girder bridges, simply supported span length of 40m. The irregulation of rail-way is derived using the exponential spectrum density function under assumption of twelve level tracks conditions based on the normal probability procedure. The dynamic responses of bridge passing through the railway locomotive with high-speed analyzed by Newmark-${\beta}$ method and Runge-Kutta method are compared and contrasted considering the developed models of bridge, track and locomotive comprehensively. The dynamic analyses of wheel forces by Runge-Kutta method which are able to analyze the forces with high frequency running on the bridge and ground rail-way are conducted. Additionally, wheel forces spectrum and three rotational components of vehicle body for three typical running speeds is also presented.

  • PDF

Development and Validation of an Improved 5-DOF Aircraft Dynamic Model for Air Traffic Control Simulation (항공교통관제 시뮬레이션을 위한 개선된 5 자유도 항공기 운동 모델 개발 및 검증방안 연구)

  • Kang, Jisoo;Oh, Hyeju;Choi, Keeyoung;Lee, Hak-Tae
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.387-393
    • /
    • 2016
  • To perform realistic air traffic control (ATC) simulation in various air traffic situations, an aircraft dynamic model that is accurate and efficient is required. In this research, an improved five degree of freedom (5-DOF) dynamic model with feedback control and guidance law is developed, which utilizes selected performance data and operational specifications from the base of aircraft data (BADA) and estimations using aircraft design techniques to improve the simulation fidelity. In addition, takeoff weight is estimated based on the aircraft type and flight plan to improve simulation accuracy. The dynamic model is validated by comparing the simulation results with recorded flight trajectories. An ATC simulation system using this 5-DOF model can be used for various ATC related research.

Modified Empirical Formula of Dynamic Amplification Factor for Wind Turbine Installation Vessel (해상풍력발전기 설치선박의 수정 동적증폭계수 추정식)

  • Ma, Kuk-Yeol;Park, Joo-Shin;Lee, Dong-Hun;Seo, Jung-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.846-855
    • /
    • 2021
  • Eco-friendly and renewable energy sources are actively being researched in recent times, and of shore wind power generation requires advanced design technologies in terms of increasing the capacities of wind turbines and enlarging wind turbine installation vessels (WTIVs). The WTIV ensures that the hull is situated at a height that is not affected by waves. The most important part of the WTIV is the leg structure, which must respond dynamically according to the wave, current, and wind loads. In particular, the wave load is composed of irregular waves, and it is important to know the exact dynamic response. The dynamic response analysis uses a single degree of freedom (SDOF) method, which is a simplified approach, but it is limited owing to the consideration of random waves. Therefore, in industrial practice, the time-domain analysis of random waves is based on the multi degree of freedom (MDOF) method. Although the MDOF method provides high-precision results, its data convergence is sensitive and difficult to apply owing to design complexity. Therefore, a dynamic amplification factor (DAF) estimation formula is developed in this study to express the dynamic response characteristics of random waves through time-domain analysis based on different variables. It is confirmed that the calculation time can be shortened and accuracy enhanced compared to existing MDOF methods. The developed formula will be used in the initial design of WTIVs and similar structures.

A Dynamic Analysis of PSC Box Bridge Varying Span Lengths for Increased Speeds of KTX (고속철 속도변화에 대한 PSC박스 교량의 경간길이 별 동적해석)

  • Oh, Soon Taek;Lee, Dong Jun;Shim, Young Woo;Yun, Jun Kwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.204-211
    • /
    • 2011
  • A dynamic analysis procedure is developed to provide a better estimation of the dynamic responses of bridge during the passage of high speed railway vehicles. Particularly, a three dimensional numerical model including the structural interaction between high speed vehicles, bridges and railway endures to analyse accurately and evaluate with in-depth parametric studies for dynamic responses of various bridge span lengths running KTX railway locomotive up to increasing maximum speed(450km/h). Three dimensional frame element is used to model the simply supported pre-stressed concrete (PSC) box bridges for four span lengths(40~25m). Track irregularity employed as a stationary random process from the given spectral density functions and irregularities of both sides of the track are assumed to have high correlation. The high-speed railway vehicle (KTX) is used as 38-degree of freedom system. Three displacements (Vertical, lateral, and longitudinal) as well as three rotational components (Pitching, rolling, and yawing) are considered in the 38-degree of freedom model. The dynamic amplification factors are evaluated by the developed procedure under various traveling conditions, such as track irregularity camber, train speed and ballast. The dynamic analysis such as Newmark-${\beta}$ and Runge-Kutta methods which are able to analyse considering the dynamic impact factors are compared and contrasted.

Property of the Mean Errors of Nonlinear Direct Spectrum Method with Structure Parameters (구조물 조건에 따른 비선형 직접스펙트럼법의 평균오차 특성)

  • 강병두;전대한;김재웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.211-218
    • /
    • 2003
  • Most structures are expected to deform beyond the limit of linearly elastic behavior when subjected to strong ground motion. Seismic evaluation of structure requires an estimation of the structural performance in terms of displacement demand imposed by earthquakes on the structure. Nonlinear response history analysis(NRHA) is the most rigorous procedure to compute seismic performance among various inelastic analysis methods. But nonlinear analysis procedures necessitate more practical and reliable tools for predicting seismic behavior of structures. This paper presents a nonlinear direct spectrum method(NDSM) to evaluate seismic performance of structures, without iterative computations, given by the structural initial elastic period and yield strength from the pushover analysis, especially for MDF(multi degree of freedom) system. The purpose of this paper is to investigate the accuracy and reliability of this method from a point of view of various earthquakes and structure parameters.

  • PDF

Estimation of Cylinder Pressure Variation Using the Crankshaft Speed Fluctuation(2) (크랭크축 각속도의 변동을 이용한 실린더내 압력 변화 추정(2))

  • Lim, B.J.;Park, J.B.;Lim, I.K.;Bae, S.S.;Kim, E.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.2
    • /
    • pp.42-50
    • /
    • 1995
  • This paper proposes a new method to investigate combustion phenomena using the variation of crankshaft speed, From the idea that the variation of crankshaft speed contains the information of combustion, the energy method is applied as a single degree of freedom. Through the comparison of measured and calculated crankshaft speed, the proposed energy model is proved to be effective. When the crankshaft speed is used in the energy equation, filtering of the speed is required. The frequency components of cylinder pressure are analyzed and the coefficients of Fourier series above the twelfth frequency of engine speed are considered as a noise. As an example of application of this research, some combustion analyses like mean effective pressure, heat release rate, and misfire detection were carried out.

  • PDF

Rotating Accuracy Analysis for Spindle with Angular Contact Ball Bearings (각 접촉 볼베어링 스핀들의 회전정밀도 분석)

  • Hwang, Jooho;Kim, Jung-Hwan;Shim, Jongyoup
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.735-739
    • /
    • 2013
  • The error motion of a machine tool spindle directly affects the surface errors of machined parts. Spindle motion errors such as three translational motions and two rotational motions are undesirable. These are usually due to the imperfectness of bearings, stiffness of spindle, assembly errors, and external force or unbalance of rotors. The error motions of the spindle need to be reduced for achieving the desired performance. Therefore, the level of error motion needs to be estimated during the design and assembly process of the spindle. In this study, an estimation method for five degree-of-freedom (5 DOF) error motions for a spindle with an angular contact ball bearing is suggested. To estimate the error motions of the spindle, the waviness of the inner-race of bearings and an external force model were used as input data. The estimation model considers the geometric relationship and force equilibrium of the five DOFs. To calculate the error motions of the spindle, not only the imperfections of the shaft and bearings but also driving elements such as belt pulley and direct driving motor systems are considered.