• Title/Summary/Keyword: estimation of degree of freedom

Search Result 120, Processing Time 0.023 seconds

The vertical spanning strip wall as a coupled rocking rigid body assembly

  • Sorrentino, Luigi;Masiani, Renato;Griffith, Michael C.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.4
    • /
    • pp.433-453
    • /
    • 2008
  • The equation of motion of a one way (vertical) spanning strip wall, as an assembly of two rigid bodies, is presented. Only one degree of freedom is needed to completely describe the wall response as the bodies are assumed to be perfectly rectangular and are allowed to rock but not to slide horizontally. Furthermore, no arching action occurs since vertical motion of the upper body is not restrained. Consequently, the equation of motion is nonlinear, with non constant coefficients and a Coriolis acceleration term. Phenomena associated with overburden to self weight ratio, motion triggering, impulsive energy dissipation, amplitude dependency of damping and period of vibration, and scale effect are discussed, contributing to a more complete understanding of experimental observations and to an estimation of system parameters based on the wall characteristics, such as intermediate hinge height and energy damping, necessary to perform nonlinear time history analyses. A comparison to a simple standing, or parapet, wall is developed in order to better highlight the characteristics of this assembly.

Displacement-Sensorless Control of Magnetic Bearing System using Current and Magnetic Flux Feedback (전류와 자속의 궤환에 의한 자기베어링 시스템의 센서가 없는 변위 제어)

  • Lee, Jun-Ho;Gang, Min-Su;Jeong, Yong-Un;Lee, Jeong-Seok;Lee, Gi-Seo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.7
    • /
    • pp.339-345
    • /
    • 2000
  • This paper deals with the displacement estimation of magnetically suspended simple 1 DOF(degree of freedom) system without the displacement sensor. Inherently electro-magnet for control has two natural feedback loops. One is the transfer function which represents the dependance of the amount of the magnetic flux on the gap displace-ments. The other is the transfer function expressing the properties that the back electromotive force is derived from the time derivative of the magnetic flux. Through these two feedback loops, information about the gap length can be represented by the magnetic flux and the coil current. This means that the gap length can be detected from these two states variables of the electromagnet without a displacements sensor(self-sensing). The displacement can be estimated with the magnetic flux subtracted by the coil current. In this paper we use a balance beam in order to deal with the displacement sensorless estimation of the magnetic bearing system. For the stable estimation of the gap displacements by using the method of self-sensing simple PD controller is used. We first show the mathematical model of the balance beam, and then we show the effectiveness of the current and flux feedback for making stable estimation of the gap displacements for the balance beam. Simulation results show the effectiveness of the current and flux feedback for good estimation of the displacement without using displacement sensor.

  • PDF

Ductility-based seismic design of precast concrete large panel buildings

  • Astarlioglu, Serdar;Memari, Ali M.;Scanlon, Andrew
    • Structural Engineering and Mechanics
    • /
    • v.10 no.4
    • /
    • pp.405-426
    • /
    • 2000
  • Two approximate methods based on mechanism analysis suitable for seismic assessment/design of structural concrete are reviewed. The methods involve use of equal energy concept or equal displacement concept along with appropriate patterns of inelastic deformations to relate structure's maximum lateral displacement to member and plastic deformations. One of these methods (Clough's method), defined here as a ductility-based approach, is examined in detail and a modification for its improvement is suggested. The modification is based on estimation of maximum inelastic displacement using inelastic design response spectra (IDRS) as an alternative to using equal energy concept. The IDRS for demand displacement ductilities are developed for a single degree of freedom model subjected to several accelerograms as functions of response modification factor (R), damping ratios, and strain hardening. The suggested revised methodology involves estimation of R as the ratio of elastic strength demand to code level demand, and determination of design base shear using $R_{design}{\leq}R$ and maximum displacement, determination of plastic displacement using IDRS and subsequent local plastic deformations. The methodology is demonstrated for the case of a 10-story precast wall panel building.

STUDY OF SUBJECTIVE COMFORT ON SHOCK-TYPE VERTICAL WHOLE-BODY VIBRATION (쇽타입 수직방향 전신진동에 대한 주관적 안락감에 관한 연구)

  • Ahn, Se-Jin;Griffin, M.J.;Jeong, Weui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1260-1264
    • /
    • 2006
  • Shock-type vibrations are usually experienced in vehicles excited by impulsive forces. Fifteen subjects used magnitude estimation to judge the discomfort of vertical shock-type vibration generated on a rigid seat. The shocks had different frequencies and magnitudes and were produced from the response of a 1 degree-of-freedom model to a half-sine force input. The magnitudes of the shocks, expressed in terms of both peak-to-peak value and un-weighted vibration dose values, VDVs, were correlated with magnitude estimates of the discomfort. In this study, equivalent comfort contour of shock-type vibration were obtained. From the contour, it was investigated that shock-type vibration at frequency below 0.8 Hz and between 4.0 Hz and 10.0 Hz is highly sensitive to the discomfort than at other frequencies.

  • PDF

A new non-iterative procedure to estimate seismic demands of structures

  • Mechaala, Abdelmounaim;Chikh, Benazouz
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.585-595
    • /
    • 2022
  • Using the nonlinear static procedures has become very common in seismic codes to achieve the nonlinear response of the structure during an earthquake. The capacity spectrum method (CSM) adopted in ATC-40 is considered as one of the most known and useful procedures. For this procedure the seismic demand can be approximated from the maximum deformation of an equivalent linear elastic Single-Degree-of-Freedom system (SDOF) that has an equivalent damping ratio and period by using an iterative procedure. Data from the results of this procedure are plotted in acceleration- displacement response spectrum (ADRS) format. Different improvements have been made in order to have more accurate results compared to the Non Linear Time History Analysis (NL-THA). A new procedure is presented in this paper where the iteration process shall not be required. This will be done by estimation the ductility demand response spectrum (DDRS) and the corresponding effective damping of the bilinear system based on a new parameter of control, called normalized yield strength coefficient (η), while retaining the attraction of graphical implementation of the improved procedure of the FEMA-440. The proposed procedure accuracy should be verified with the NL-THA analysis results as a first implementation. The comparison shows that the new procedure provided a good estimation of the nonlinear response of the structure compared with those obtained when using the NL-THA analysis.

Assessment of discomfort in elbow motion from driver posture (운전자 자세에 따른 팔꿈치 동작의 불편도 평가)

  • Tak, Tae-Oh;Lee, Pyoung-Rim
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.265-272
    • /
    • 2001
  • The human arm is modeled by three rigid bodies(the upper arm, the forearm and the hand)with seven degree of freedom(three in the shoulder, two in the elbow and two in the wrist). The objective of this work is to present a method to determine the three-dimensional kinematics of the human elbow joint using a magnetic tracking device. Euler angle were used to determine the elbow flexion-extension, and the pronation-supination. The elbow motion for the various driving conditions is measured through the driving test using a simulator. Discomfort levels of elbow joint motions were obtained as discomfort functions, which were based on subjects' perceived discomfort level estimated by magnitude estimation. The results showed that the discomfort posture of elbow joint motions occurred in the driving motion.

  • PDF

The Stability Conditions, Performance and Design Methodology for the Positive Position Feedback Controller (양변위 되먹임 제어기의 안정성, 제어 성능 및 설계 방법)

  • Kwak, Moon-Kyu;Han, Sang-Bo;Heo, Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.3
    • /
    • pp.208-213
    • /
    • 2004
  • This paper is concerned with the theoretical estimation of the single-input single-output(SISO) positive position feedback(PPF) controller and the derivation of the stability conditions for the multi-input multi-output (MIMO) PPF controller. Although the stability condition for the SISO PPF controller was derived in the earlier works, the question regarding the performance estimation of the SISO PPF controller has never been studied theoretically. Hence, the SISO PPF controller for the single degree-of-freedom system was first investigated and then control parameters including gain, the filter frequency, and the damping factor of the PPF controller were analyzed in detail thus providing the design methodology for the SISO PPF controller. In the case of real structure. there are infinite number of natural modes so that some modes are to be controlled by a limited number of actuator and sensor. Based on the theoretical results on the SISO PPF controller, the stability condition for the multi-input multi-output PPF controller was derived when only the few number of modes are to be controlled. The control spillover problem is also discussed in detail.

Development of Visual Servo Control System for the Tracking and Grabbing of Moving Object (이동 물체 포착을 위한 비젼 서보 제어 시스템 개발)

  • Choi, G.J.;Cho, W.S.;Ahn, D.S.
    • Journal of Power System Engineering
    • /
    • v.6 no.1
    • /
    • pp.96-101
    • /
    • 2002
  • In this paper, we address the problem of controlling an end-effector to track and grab a moving target using the visual servoing technique. A visual servo mechanism based on the image-based servoing principle, is proposed by using visual feedback to control an end-effector without calibrated robot and camera models. Firstly, we consider the control problem as a nonlinear least squares optimization and update the joint angles through the Taylor Series Expansion. And to track a moving target in real time, the Jacobian estimation scheme(Dynamic Broyden's Method) is used to estimate the combined robot and image Jacobian. Using this algorithm, we can drive the objective function value to a neighborhood of zero. To show the effectiveness of the proposed algorithm, simulation results for a six degree of freedom robot are presented.

  • PDF

Design of a Robust Controller for Uncertain Robot Manipulators with Torque Saturation using a Fuzzy Algorithm (토크 한계를 갖는 불확실한 로봇 매니퓰레이터의 퍼지 논리를 이용한 강인 제어기의 설계)

  • 최형식;박재형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.138-144
    • /
    • 2000
  • Robot manipulators, which are nonlinear structures and have uncertain system parameters, have complex in dynamics when are operated in unknown environment. To compensate for estimate errors of the uncertain system parameters and to accomplish the desired trajectory tracking, nonlinear robust controllers are appropriate. However, when estimation errors or tracking errors are large, they require large input torques, which may not be satisfied due to torque limits of actuators. As a result, their stability can not be guaranteed. In this paper, a new robust control scheme is presented to solve stability problem and to achieve fast trajectory tracking in the presence of torque limits. By using fuzzy logic, new desired trajectories which can be reduced are generated based on the initial desired trajectory, and torques of the robust controller are regulated to not exceed torque limits. Numerical examples are shown to validate the proposed controller using an uncertain two degree-of-freedom underwater robot manipulator.

  • PDF

Parameter Estimation of Dynamic System Based on UKF (UKF 기반한 동역학 시스템 파라미터의 추정)

  • Seung, Ji-Hoon;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.772-778
    • /
    • 2012
  • In this paper, the states and the parameters in the dynamic system are simultaneously estimated by applying the UKF(Unscented Kalman Filter), which is widely used for estimating the state of non-linear systems. Estimating the parameter is very important in various fields, such as system control, modeling, analysis of performance, and prediction. Most of the dynamic systems which are dealt with in engineering have non-linearity as well as some noise. Therefore, the parameter estimation is difficult. This paper estimates the states and the parameters applying to the UKF, which is a non-linear filter and has strong noise. The augmented equation is used by including the addition of the parameter factors to the original state equation of the system. Moreover, it is simulated by applying to a 2-DOF(Degree of Freedom) dynamic system composed of the pendulum and the slide. The measurement noise of the dynamic equation is assumed to be a Gaussian distribution. As the simulation results show, the proposed parameter estimation performs better than the LSM(Least Square Method). Furthermore, the estimation errors and convergence time are within three percent and 0.1 second, respectively. Consequentially, the UKF is able to estimate the system states and the parameters for the system, despite having measurement data with noise.