• Title/Summary/Keyword: estimation of damage

Search Result 938, Processing Time 0.024 seconds

Estimation of the Fatigue Damage for an Ice-going Vessel under Broken Ice Condition Part II - Simplified Approach (유빙 하중을 받는 내빙 선박의 피로손상도 추정 Part II - 간이 해석법)

  • Kim, Jeong-Hwan;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.3
    • /
    • pp.231-241
    • /
    • 2019
  • In this study, a simplified analysis method was developed to evaluate the fatigue damage of an ice-going ship under broken ice condition. The global ice load, which is essentially calculated at the design stage of the Arctic vessel, and the hull form information were used to estimate the local ice load acting on the outer-shell of the ship. The local ice load was applied to the finite element analysis model, and the Weibull parameters for the target fatigue point were derived. Finally, fatigue damage was evaluated by applying the S-N curve and the Palmgren-Miner rule. For the verification of the proposed method, numerical analyses using direct approach were performed for the same conditions. A numerical model that implements the interaction between ice and structure was introduced to verify the local ice load and the stress calculated from the proposed method. Finally, the fatigue analyses of the Baltic Sea for actual ice conditions were performed, and the results of the proposed method, the method using numerical analysis, and the LR method were compared.

Structural Health Monitoring Technique for Tripod Support Structure of Offshore Wind Turbine (해상풍력터빈 트라이포드 지지구조물의 건전성 모니터링 기법)

  • Lee, Jong-Won
    • Journal of Wind Energy
    • /
    • v.9 no.4
    • /
    • pp.16-23
    • /
    • 2018
  • A damage detection method for the tripod support structure of offshore wind turbines is presented for structural health monitoring. A finite element model of a prototype tripod support structure is established and the modal properties are calculated. The degree and location of the damage are estimated based on the neural network technique using the changes of natural frequencies and mode shape due to the damage. The stress distribution occurring in the support structure is obtained by a dynamic analysis for the wind turbine system to select the output data of the neural network. The natural frequencies and mode shapes for 36 possible damage scenarios were used for the input data of the learned neural network for damage assessment. The estimated damages agreed reasonably well with the accurate ones. The presented method could be effectively applied for damage detection and structural health monitoring of various types of support structures of offshore wind turbines.

Earthquake Loss Estimation Including Regional Characteristics (지역특성을 반영한 지진손실평가)

  • Kim, Joon-Hyung;Hong, Yun-Su;Yu, Eunjong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.311-320
    • /
    • 2023
  • When an earthquake occurs, the severity of damage is determined by natural factors such as the magnitude of the earthquake, the epicenter distance, soil properties, and type of the structures in the affected area, as well as the socio-economic factors such as the population, disaster prevention measures, and economic power of the community. This study evaluated the direct economic loss due to building damage and the community's recovery ability. Building damage was estimated using fragility functions due to the design earthquake by the seismic design code. The usage of the building was determined from the information in the building registrar. Direct economic loss was evaluated using the standard unit price and estimated building damage. The standard unit price was obtained from the Korean Real Estate Board. The community's recovery capacity was calculated using nine indicators selected from regional statistical data. After appropriate normalization and factor analysis, the recovery ability score was calculated through relative evaluation with neighboring cities.

Windborne debris risk analysis - Part I. Introduction and methodology

  • Lin, Ning;Vanmarcke, Erik
    • Wind and Structures
    • /
    • v.13 no.2
    • /
    • pp.191-206
    • /
    • 2010
  • Windborne debris is a major cause of structural damage during severe windstorms and hurricanes owing to its direct impact on building envelopes as well as to the 'chain reaction' failure mechanism it induces by interacting with wind pressure damage. Estimation of debris risk is an important component in evaluating wind damage risk to residential developments. A debris risk model developed by the authors enables one to analytically aggregate damage threats to a building from different types of debris originating from neighboring buildings. This model is extended herein to a general debris risk analysis methodology that is then incorporated into a vulnerability model accounting for the temporal evolution of the interaction between pressure damage and debris damage during storm passage. The current paper (Part I) introduces the debris risk analysis methodology, establishing the mathematical modeling framework. Stochastic models are proposed to estimate the probability distributions of debris trajectory parameters used in the method. It is shown that model statistics can be estimated from available information from wind-tunnel experiments and post-damage surveys. The incorporation of the methodology into vulnerability modeling is described in Part II.

Bridge-vehicle coupled vibration response and static test data based damage identification of highway bridges

  • Zhu, Jinsong;Yi, Qiang
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.75-90
    • /
    • 2013
  • In order to identify damage of highway bridges rapidly, a method for damage identification using dynamic response of bridge induced by moving vehicle and static test data is proposed. To locate damage of the structure, displacement energy damage index defined from the energy of the displacement response time history is adopted as the indicator. The displacement response time histories of bridge structure are obtained from simulation of vehicle-bridge coupled vibration analysis. The vehicle model is considered as a four-degree-of-freedom system, and the vibration equations of the vehicle model are deduced based on the D'Alembert principle. Finite element method is used to discretize bridge and finite element model is set up. According to the condition of displacement and force compatibility between vehicle and bridge, the vibration equations of the vehicle and bridge models are coupled. A Newmark-${\beta}$ algorithm based professional procedure VBAP is developed in MATLAB, and used to analyze the vehicle-bridge system coupled vibration. After damage is located by employing the displacement energy damage index, the damage extent is estimated through the least-square-method based model updating using static test data. At last, taking one simply supported bridge as an illustrative example, some damage scenarios are identified using the proposed damage identification methodology. The results indicate that the proposed method is efficient for damage localization and damage extent estimation.

A Study on Earthquke Damage Estimation of Non Precede Designed Reinforced Concrete Apartment in Korea (국내 비내진 설계 철근콘크리트 아파트에 대한 지진피해 예측 연구)

  • Kwon, Ki-Hyuk;Ko, Yong-Bum
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.4 s.19
    • /
    • pp.95-105
    • /
    • 2005
  • Korea is located away from plate boundaries which are not safe from earthquakes. However, having witnessed the large-scale earthquake in the Tangshan region in 1976 deemed as a safe plate, it should not be assured that Korea is absolutely safe from earthquakes. In addition, many seismologists have claimed that there indeed is a high possibility of earthquakes above mid scale that would occur in Korea. Because it is impossible to prevent earthquake, studies on seismic design and earthquake disaster control system are widely being conducted. However, studies on early response to earthquakes or recovery process are still very limited, and only a few studies for establishing earthquake damage evaluation system are being conducted. Thus, this study aimed to present essential data for establishing earthquake damage evaluation system that takes into account the real situation of structures in Korea. In this study, a nonseimically reinforced concrete apartment structure in Gangnamgu was selected as an standard type of such structures and its earthquake damage was estimated. The result of damage evaluation based on the derivation of vulnerability function and realtive story displacement was compared to that abtained using HAZUS Program Vulnerability Function.

Estimation of Image-based Damage Location and Generation of Exterior Damage Map for Port Structures (영상 기반 항만시설물 손상 위치 추정 및 외관조사망도 작성)

  • Banghyeon Kim;Sangyoon So;Soojin Cho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.49-56
    • /
    • 2023
  • This study proposed a damage location estimation method for automated image-based port infrastructure inspection. Memory efficiency was improved by calculating the homography matrix using feature detection technology and outlier removal technology, without going through the 3D modeling process and storing only damage information. To develop an algorithm specialized for port infrastructure, the algorithm was optimized through ground-truth coordinate pairs created using images of port infrastructure. The location errors obtained by applying this to the sample and concrete wall were (X: 6.5cm, Y: 1.3cm) and (X: 12.7cm, Y: 6.4cm), respectively. In addition, by applying the algorithm to the concrete wall and displaying it in the form of an exterior damage map, the possibility of field application was demonstrated.

Damage Detection of Building Structures using AEKF(Adaptive Extended Kalman Filter) (AEKF(Adaptive Extended Kalman Filter)를 이용하는 건축 구조물의 손상탐지)

  • Yun, Da Yo;Kim, Yousok;Park, Hyo Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.1
    • /
    • pp.45-54
    • /
    • 2019
  • The damage detection method using the extended Kalman filter(EKF) technique has been continuously used since EKF can estimation the responses of the damaged building structure and the stiffness of the structure. However, in the use of EKF, the requirement of setting the initial paramters P, Q, and R has caused the divergence and instability of the state vector, and various researches have been conducted to determine theses parameters. In this paper, adaptive extended Kalman filter(AEKF) method is proposed to solve the problem of setting the values of P, Q, and R, which are important parameters determining the convergence performance of the EKF state vector. By using the AEKF method proposed in this study, the P, Q, and R parameters are updated every k steps. The proposed algorithm is applied for the estimation of stiffness and the damage detection of 3-DOF problem. Based of the verification, it can be found that the selection process for the values of P, Q, and R can improve the convergence performance of EKF.

Flood Damage Estimation causing Backwater due to the Blockage by Debris in the Bridges (교량에 집적된 유송잡물의 배수영향에 의한 홍수피해 분석)

  • Kim, Soo-Jun;Chung, Jae-Hak;Lee, Jong-Seol;Kim, Ji-Tae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.4
    • /
    • pp.59-66
    • /
    • 2007
  • The bridge crossing river is the one of the major factors causing backwater level rising. Furthermore, the bridges in the mountainous areas increase the flood damage in the upstream of the bridge due to the blockage by debris. In this research, the effects of debris to the magnitude of flood damage in the study river basin were simulated by using HEC-RAS and HEC-GeoRAS models. With assumption that the backwater caused by debris blocking the space between bridge piers is the only factor causing inundation, the unsteady flow simulation was carried out with various case studies. The potential inundation area with the overflow locations and volumes could be estimated as the results of simulation. However, the simulation results also reveal the limitations of inaccurate estimation of inundation area and depth. To overcome these hindrances, DEM and satellite images were applied to the simulation. By readjusting the inundation area using digital maps and satellite images and calibrating overflow volume and depth using DEM, the accuracy of simulation could be increased resulting more accurate flood damage estimation.

Development of an Inventory-Based Flood Loss Estimation Method for Rural Areas (인벤토리 기반 농촌지역 홍수손실 평가기법 개발)

  • Kim, Sinae;Lee, Jonghyuk;Jun, Sang-Min;Choi, Won;Kang, Moon-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.6
    • /
    • pp.65-78
    • /
    • 2023
  • In recent times, the frequency and intensity of natural disasters, such as heavy rains and typhoons, have been increasing due to the impacts of climate change. This has led to a rise in social and economic damages. Rural areas, in particular, possess limited disaster response capabilities due to their underdeveloped infrastructure and are highly vulnerable to flooding. Therefore, it is crucial to establish preventative and responsive measures. In this study, an Inventory-Based Flood Loss Estimation (IB-FLE) method utilizing high-resolution spatial information was developed for estimating flood-related losses in rural areas. Additionally, the developed approach was applied to a study area and compared with the Multidimensional Flood Damage Analysis (MD-FDA) method. Compared to the MD-FDA, the IB-FLE enables faster and more accurate estimation of flood damages and allows for the assessment of individual building and agricultural land losses using up-to-date information. The findings of this study are expected to contribute to the rational allocation of budgets for rural flood damage prevention and recovery, as well as enhancing disaster response capabilities.