• Title/Summary/Keyword: estimating equation

Search Result 743, Processing Time 0.029 seconds

On Design of Visual Servoing using an Uncalibrated Camera and a Calibrated Robot

  • Uchikado, Shigeru;Morita, Masahiko;Osa, Yasuhiro;Mabuchi, Tesuo;Tanya, Kanya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.23.2-23
    • /
    • 2001
  • In this paper we deal with visual servoing that can control a robot arm with a camera using information of images only, without estimating 3D position and rotation of the robot arm. Here it is assumed that the robot arm is calibrated and the camera is uncalibrated. We use a pinhole camera model as the camera one. The essential notion can be show, that is, epipolar geometry, epipole, epipolar equation, and epipolar constrain. These play an important role in designing visual servoing. For easy understanding of the proposed method we first show a design in case of the calibrated camera. The design is constructed by 4 steps and the directional motion of the robot arm is fixed only to a constant direction. This means that an estimated epipole denotes the direction, to which the robot arm translates in 3D space, on the image plane.

  • PDF

Two-Dimensional Approach for Stress Intensity Factor Solution of a Semi-Elliptical Crack (2차원적 해석을 통한 반타원 결함의 응력세기계수 산출)

  • Ho, Kwang-Il;Park, In-Gyu
    • Nuclear Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.12-19
    • /
    • 1991
  • An engineering approach for estimating the stress intensity factors of a semi-elliptical crack is presented. An approximate 2-dimensional approach solution for semi-elliptical crack is derived in terms of simple equation, through weight function technique, by reflecting on the physical character of cracks.

  • PDF

Rocking Behavior of Clamped Shape Metallic Damper (꺽쇠형 강재 댐퍼의 록킹 거동)

  • Lee, Hyun-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.2
    • /
    • pp.27-34
    • /
    • 2019
  • This study proposes a technique to dissipate the energy of a rocking wall installed on a frame by using a metallic damper. The rocking behavior is to turn left and right about the wall vertical axis. The development system is a method of dissipating energy by installing a damper which is the like on a large displacement portion. Experimental results showed that in case of shorter strut make strength capacity increasement and in case of longer strut make deformation capacity increasement. The higher the strut height, the better the energy dissipation capacity. The proposed equation for estimating the steel damper strength applied to this study is a straight type strut damper. However, it is not suitable for calculation of the strength of clamped type strut damper where both flexural behavior and shear behavior are mixed.

A General Design Method of Constructing Fully Homomorphic Encryption with Ciphertext Matrix

  • Song, Xinxia;Chen, Zhigang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2629-2650
    • /
    • 2019
  • It is important to construct fully homomorphic encryption with ciphertext matrix that makes fully homomorphic encryption become very nature and simple. We present a general design method of constructing fully homomorphic encryption whose ciphertext is matrix. By using this design method, we can deduce a fully homomorphic encryption scheme step by step based on a basic encryption scheme. The process of deduction is similar to solving equation and the final output result is a fully homomorphic encryption scheme with ciphertext matrix. The idea of constructing ciphertext matrix is ciphertexts stack, which don't simply stack ciphertexts together but is to obtain the desired homomorphic property. We use decryption structure as tool to analyze homomorphic property and noise growth during homomorphic evaluation. By using this design method, we obtain three corresponding fully homomorphic encryption schemes. Our obtained fully homomorphic encryption schemes are more efficient. Finally, we introduce the adversary advantage and improve the previous method of estimating concert parameters of fully homomorphic encryption. We give the concert parameters of these schemes.

Estimating Strain Rate Dependent Parameters of Cowper-Symonds Model Using Electrohydraulic Forming and Artificial Neural Network (액중 방전 성형과 인공신경망 기법을 활용한 Cowper-Symonds 구성 방정식의 변형률 속도 파라메터 역추정)

  • Byun, H.B.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.31 no.2
    • /
    • pp.81-88
    • /
    • 2022
  • Numerical analysis and dynamic material properties are required to analyze the behavior of workpiece during an electrohydraulic forming (EHF) process. In this study, EHF experiments were conducted under three conditions (6, 7, 8 kV). Dynamic material properties of Al 5052-H34 were inversely estimated through an ANN (Artificial Neural Network) model constructed based on LS-Dyna analysis results. Parameters of Cowper-Symonds constitutive equation, C and p, were used to implement dynamic material properties. By comparing experimental results of three conditions with ANN model results, optimized parameters were obtained. To determine the reliability of the derived parameters, experimental results, LS-Dyna analysis results, and ANN results of three conditions were compared using MSE and SMAPE. Valid parameters were obtained because values of indicators were within confidence intervals.

A Study on Plate Bending Analysis Using Boundary Element Method

  • Son, Jae-hyeon;Kim, Yooil
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.232-242
    • /
    • 2022
  • This study presents a method for level ice-structure interaction analysis to estimate the fatigue damage of arctic structures by applying plate theory to the behavior of level ice. The boundary element method (BEM), which incurs a lower computational cost than the finite element method (FEM), was introduced to solve the plate bending problem. The BEM formulation was performed by applying the BEM to plate theory. Finally, to check the validity of the proposed method, the BEM results and FEM results obtained using the ABAQUS commercial software were compared. The response results of the BEM analysis agreed well with those of the FEM analysis. Based on the results of the analysis, the BEM approach is considered to be very powerful in level ice-structure interaction analysis for estimating level ice-induced fatigue damage. Further work is being conducted to perform level ice fracture analysis based on the stress field calculated using the boundary element method.

Development of f-chart for the Design of Solar Heating Systems (태양열난방장치 설계를 위한 f-chart 개발)

  • Song Dal-Sun;Yoo Seong-Yeon
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.15 no.3
    • /
    • pp.292-298
    • /
    • 1986
  • The new f-chart capable of estimating long-term thermal performance of solar space and water heating systems was developed. The system comprise a flat plate solar collector, heat exchanger, storage tank filled with water, auxiliary fuel fired heater, and a house structure. The information obtained from many simulations of solar heating systems has been used to develop this f-chart. Actual hourly meteorological data collected in Seoul, Daejeon, Kwangju and Daegu, Korea from 1979 to 1983 have been utilized in these simulations. The new f-equation is as follows: $$f=1.034Y_{-}0.0968X_{-}0.2235Y^2+0.0043X^2+0.0144Y^3$$. The system performance estimates obtained from the developed f-chart are in close agreement with the results of experiment.

  • PDF

A Comparative Analysis of Artificial Neural Network (ANN) Architectures for Box Compression Strength Estimation

  • By Juan Gu;Benjamin Frank;Euihark Lee
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.3
    • /
    • pp.163-174
    • /
    • 2023
  • Though box compression strength (BCS) is commonly used as a performance criterion for shipping containers, estimating BCS remains a challenge. In this study, artificial neural networks (ANN) are implemented as a new tool, with a focus on building up ANN architectures for BCS estimation. An Artificial Neural Network (ANN) model can be constructed by adjusting four modeling factors: hidden neuron numbers, epochs, number of modeling cycles, and number of data points. The four factors interact with each other to influence model accuracy and can be optimized by minimizing model's Mean Squared Error (MSE). Using both data from the literature and "synthetic" data based on the McKee equation, we find that model estimation accuracy remains limited due to the uncertainty in both the input parameters and the ANN process itself. The population size to build an ANN model has been identified based on different data sets. This study provides a methodology guide for future research exploring the applicability of ANN to address problems and answer questions in the corrugated industry.

Estimation of Ammonia Emission During Composting Iivestock Manure Based on the Degree of Compost Maturity (축분 퇴비화 과정 중 퇴비 부숙도를 고려한 암모니아 발생량 산정)

  • 김기연;최홍림;고한종;김치년
    • Journal of Animal Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.123-130
    • /
    • 2006
  • Principal aim of this study is to suggest the statistical equation model which can predict an amount of ammonia emission according to the degree of compost maturity during composting livestock manure. Composting process was classified with intial, midterm and final phase based on germination index of compost samples. Total Kjeldahl nitrogen(TKN) and organic matter(OM) were selected as the independent variables available to contribute to ammonia emission from composting pile. Ammonia concentration measured in the samples taken at the intial phase was about 10ppm, sharply increased to 50ppm at the midterm phase, and gradually decreased to about 10ppm. The contents of Total Kjeldahl nitrogen and organic matter through whole composting period were ranged from 0.6 to 1.2% and from 30 to 40%, respectively, were reduced slightly at the midterm phase, but generally showed no constant fluctuation pattern. In estimating ammonia emission with application of the statistical equation model, the coefficients of independent variables at the midterm phase when an average concentration of ammonia was highest showed a relatively high values whereas those at the initial phase when an that of ammonia was lowest indicated a relatively low values. However, no statistical significance was found in the coefficients of independent variables and the equation model. Additionally, the further research, which can include the considerable analysis data with more samples taken than this study, is needed in order to suggest the statistically significant equation model available to predict ammonia emission during composting process.

An Experimental Study on Scour at V-shaped Riffle (V형 여울에서 발생하는 세굴에 관한 실험 연구)

  • Yu, Dae-Young;Park, Jung-Hwan;Woo, Hyo-Seop
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.3 s.134
    • /
    • pp.507-520
    • /
    • 2003
  • A V-shaped riffle is an artificial hydraulic structure haying two wings from the streamside with a narrow opening in between. It is usually made of crushed stones or large boulders. It limits channel width and accelerates the flow through the constricted section causing a local scour just downstream. The V-shaped riffle provides with a unique aquatic habitat by forming a pool and sandbars around the pool edge, increasing local morphologic, hydraulic and sedimentological diversity. This study investigates experimentally the scour characteristics of the V-shaped riffle in the sandbed stream and proposes a predictive equation for the scour. Total 45 cases of experiments were conducted to examine the effect of hydraulic factors and configuration of V-shaped riffle on the geometry of scour holes. From the comparison of the experimental results of this study with the predictive equation of spur dike by Breusers and Raudkivi(1991), it is found that their predictive equation of spur dike underestimates the maximum scour depth downstream of the V-shaped riffle. h new predictive equation for the maximum scour depth was developed using the non-dimensional hydraulic and geometrical variables. The parameters used in the proposed equations were determined using the experimental data. The analysis reveals that the scour depth is dependent dominantly on the Froude number at the opening of the V-shaped riffle, while the angle of riffle and the opening width also affect the scour depth. The proposed equation for the scour of V-shaped riffle well agrees with the experimental data. It can be used for estimating the scour of the V-shaped riffle in sandbed streams.