• Title/Summary/Keyword: estimate the travel time

Search Result 144, Processing Time 0.025 seconds

Evaluating Value of Information on Bus-Route Concerning on the User's Individual Value (이용자 개인의 버스 환승 노선정보의 이용가치 평가)

  • Park, Yong-Jin;Kang, Sin-Hwa
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.6
    • /
    • pp.89-99
    • /
    • 2004
  • The purpose of this study is to evaluate the value of information on Bus-Route concerning on the User's Individual value. The value of information is estimated with the price of time saving by using the information. The price of unit time for each user is applied to convert the saving time to the cost. To estimate the user's expense from origin to destination the previous model is modified. Bus-travel cost is estimated with variables such as bus-travel time, bus-interval, bus-fare, and the price of walking distance. In this study, to estimate in-vehicle time the bus-travel time model is developed based on the spatial characteristics distinguished by three types of circular-road in the network of Daegu Metropolitan area. For the case study, a set of the origin and destination is selected as Dalsu-gu District Office and East Daegu Train Station respectively. There are several bus-routes which can be used as direct or transferable bus-routes selected. The study showed that when the value of time for individual users is \1,738/hr, there is no benefit to using information of transferable bus-routes. It also showed that the more discount rates of bus fare is increased, the benefit to using information of transferable bus-routes is increased, and that the lower value of time is, the benefit to using information of transferable bus-routes is increased.

고속 CNC선반 이송계의 열변형 오차 해석

  • 윤원수;김수광;하재룡;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.263-268
    • /
    • 1997
  • Development of a high speed feed drive system has been a major issue for the past few decades in machine tool industries. The reduction of tool change time as well as repid travel time can enhance the productivity. However,the high speed feed drive system generates more heat in nature,which leads to thermal expansion that has adverse effects on the accuracy of machined part. The paper divides the feed drive system into the ball screw and guide way. For each part, the thermal behvior model is separtately developed to estimate the position error of the respective feed drive system that is caused by the thermal expansion. The modified lumped capacitance method is used to analyze the linear position error of the ball screw. The thermal deformation of guide way parts affects the straightness and angular error as well as linear position error. Finite element method is used to estimate the thermal behavior of these guide way parts. The effectiveness of the proposed models are verified through the experiments using laser interferometer.

Runoff Estimation for Small Watershed by Interactive Program (Interactive program에 의한 소유역의 유출량 산정)

  • 안상진;김종섭
    • Water for future
    • /
    • v.25 no.4
    • /
    • pp.97-107
    • /
    • 1992
  • The purpose of this study is to estimate the flood hydrograph and runoff at ungaged small watershed by using interactive program with geomorphologic and climatic data obtained from the topographic maps following the law of stream classification and ordering by Horton and Strahler. The present model is modified from Allam's interactive program which derives the geomorphologic instantaneous unit hydrograph(GIUH). This program uses the results of Laplace transformation and convolution integral of probability density function in travel time at each station, This program is used to estimate the time to peak, the flood discharge and the direct runoff at San seong station in Bocheong Stream.

  • PDF

The Estimations of A Conceptual Time Distribution of Rainfall and Design Flood (강우의 개념적 시간분포와 설계홍수량 산정에 관한 연구)

  • Lee Byung Woon;Jang Dae Won;Kim Hung Soo;Seoh Byung Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.937-942
    • /
    • 2005
  • It is necessary to estimate the runoff hydrograph and peak flood discharge using law of probability for synthetic flood control policy and design of hydraulic structures. Rainfall analysis is needed in the process of peak flood discharge estimation and the time distribution of a design rainfall is a very important process in the analysis. In this study, we estimate design flood for a small urban basin and a rural basin of medium scale which have different travel times. The Huff method is widely used in Korea for the time distribution of design rainfall to estimate design flood. So, we use Huff method and a conceptual method which is suggested in this study for the comparative purpose. The 100-year frequency rainfall is used to estimate design flood for each basin and the design flood is compared with the existing design flood. As the result, the design flood is overestimated $14.6m^3/sec$ by Huff method and is underestimated $70.9m^3/sec$ by a conceptual method for the rural basin. For the small urban basin, the design flood is excessively overestimated $294.65m^3/sec$ by Huff method and is overestimated $173m^3/sec$ by a conceptual method. The reason of excessive overestimation by Huff method in the small urban basin is that the increased rate of rainfall intensity according to the decrease of duration is large and the duration exceeds the time of concentration when the increased rainfall intensity is concentrated in a quartile. Therefore, we suggested a conceptual method for the time distribution of design rainfall by considering the rainless period and duration. Especially, the conceptual method might be useful for the small urban basin with short concentration time which the design flood is overestimated by Huff method.

  • PDF

Comparison Study of O/D Estimation Methods for Building a Large-Sized Microscopic Traffic Simulation Network: Cases of Gravity Model and QUEEENSOD Method (대규모 미시교통시뮬레이션모형 구축을 위한 O/D 추정 방법 성능 비교 - 중력모형과 QUEENSOD 방법을 중심으로 -)

  • Yoon, Jung Eun;Lee, Cheol Ki;Lee, Hwan Pil;Kim, Kyung Hyun;Park, Wonil;Yun, Ilsoo
    • International Journal of Highway Engineering
    • /
    • v.18 no.2
    • /
    • pp.91-101
    • /
    • 2016
  • PURPOSES : The aim of this study was to compare the performance of the QUEENSOD method and the gravity model in estimating Origin-Destination (O/D) tables for a large-sized microscopic traffic simulation network. METHODS : In this study, an expressway network was simulated using the microscopic traffic simulation model, VISSIM. The gravity model and QUEENSOD method were used to estimate the O/D pairs between internal and between external zones. RESULTS: After obtaining estimations of the O/D table by using both the gravity model and the QUEENSOD method, the value of the root mean square error (RMSE) for O/D pairs between internal zones were compared. For the gravity model and the QUEENSOD method, the RMSE obtained were 386.0 and 241.2, respectively. The O/D tables estimated using both methods were then entered into the VISSIM networks and calibrated with measured travel time. The resulting estimated travel times were then compared. For the gravity model and the QUEENSOD method, the estimated travel times showed 1.16% and 0.45% deviation from the surveyed travel time, respectively. CONCLUSIONS : In building a large-sized microscopic traffic simulation network, an O/D matrix is essential in order to produce reliable analysis results. When link counts from diverse ITS facilities are available, the QUEENSOD method outperforms the gravity model.

A surrogate model-based framework for seismic resilience estimation of bridge transportation networks

  • Sungsik Yoon ;Young-Joo Lee
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.49-59
    • /
    • 2023
  • A bridge transportation network supplies products from various source nodes to destination nodes through bridge structures in a target region. However, recent frequent earthquakes have caused damage to bridge structures, resulting in extreme direct damage to the target area as well as indirect damage to other lifeline structures. Therefore, in this study, a surrogate model-based comprehensive framework to estimate the seismic resilience of bridge transportation networks is proposed. For this purpose, total system travel time (TSTT) is introduced for accurate performance indicator of the bridge transportation network, and an artificial neural network (ANN)-based surrogate model is constructed to reduce traffic analysis time for high-dimensional TSTT computation. The proposed framework includes procedures for constructing an ANN-based surrogate model to accelerate network performance computation, as well as conventional procedures such as direct Monte Carlo simulation (MCS) calculation and bridge restoration calculation. To demonstrate the proposed framework, Pohang bridge transportation network is reconstructed based on geographic information system (GIS) data, and an ANN model is constructed with the damage states of the transportation network and TSTT using the representative earthquake epicenter in the target area. For obtaining the seismic resilience curve of the Pohang region, five epicenters are considered, with earthquake magnitudes 6.0 to 8.0, and the direct and indirect damages of the bridge transportation network are evaluated. Thus, it is concluded that the proposed surrogate model-based framework can efficiently evaluate the seismic resilience of a high-dimensional bridge transportation network, and also it can be used for decision-making to minimize damage.

An Agent-Based Modeling Approach for Estimating Inundation Areas over Time (행위자 기반 모델링을 활용한 시간에 따른 침수 지역 예상)

  • Kim, Byungil;Shin, Sha Chul;Jung, Jaehoon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.4
    • /
    • pp.20-27
    • /
    • 2016
  • Emergency and evacuation planning is critical to reduce potential loss of life from flooding. In order to develop evacuation plans, emergency managers and decision makers require estimates of probable inundation areas and times of inundation. In this paper, we present an agent-based modeling approach that incorporates in a hydrodynamic model to estimate both of these properties. A case study is conducted modeling the failure of a dam located in Andong, South Korea. We estimate flood travel times for Manning's roughness coefficients and discharge using a coupling of the continuity equation and Manning's equation. Using the output from the hydrodynamic model and the flood travel times, the agent-based model produces flood inundation maps at each time interval. The model estimates that for two-thirds of the Andong region the time of inundation is estimated to be slightly less than three minutes. The results of this study can be used to in the development of emergency and evacuation planning for the region.

A Study on Scale Analysis of the Induced Traffic by Survey (이용자 설문을 통한 유발수요 규모 분석 - 광명역 고속철도 이용자를 중심으로 -)

  • Jo, Chang-Hee;Yu, Bo-Kuen
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.769-774
    • /
    • 2010
  • KTX Introduced in korea have occurred enhanced services and reduced regional travel time. "Induced traffic" is defined in the traffic demand generated in new project. 'Induced traffic' compared to the Diversion Demand Survey and research on ways to quantify the situation, insufficient analysis of constant and long-term observations are needed to estimate the changes in demand. In this study, Induced traffic effects due to the opening of KTX for analysis survey to passengers by Railway and the scale factor induced traffic review.

  • PDF

Development and Application of the Mode Choice Models According to Zone Sizes (분석대상 규모에 따른 수단분담모형의 추정과 적용에 관한 연구)

  • Kim, Ju-Yeong;Lee, Seung-Jae;Kim, Do-Gyeong;Jeon, Jang-U
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.6
    • /
    • pp.97-106
    • /
    • 2011
  • Mode choice model is an essential element for estimating- the demand of new means of transportation in the planning stage as well as in the establishment phase. In general, current demand analysis model developed for the mode choice analysis applies common parameters of utility function in each region which causes inaccuracy in forecasting mode choice behavior. Several critical problems from using common parameters are: a common parameter set can not reflect different distribution of coefficient for travel time and travel cost by different population. Consequently, the resulting model fails to accurately explain policy variables such as travel time and travel cost. In particular, the nonlinear logit model applied to aggregation data is vulnerable to the aggregation error. The purpose of this paper is to consider the regional characteristics by adopting the parameters fitted to each area, so as to reduce prediction errors and enhance accuracy of the resulting mode choice model. In order to estimate parameter of each area, this study used Household Travel Survey Data of Metropolitan Transportation Authority. For the verification of the model, the value of time by marginal rate of substitution is evaluated and statistical test for resulting coefficients is also carried out. In order to crosscheck the applicability and reliability of the model, changes in mode choice are analyzed when Seoul subway line 9 is newly opened and the results are compared with those from the existing model developed without considering the regional characteristics.

Traffic Signal Control Algorithm for Isolated Intersections Based on Travel Time (독립교차로의 통행시간 기반 신호제어 알고리즘)

  • Jeong, Youngje;Park, Sang Sup;Kim, Youngchan
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.6
    • /
    • pp.71-80
    • /
    • 2012
  • This research suggested a real-time traffic signal control algorithm using individual vehicle travel times on an isolated signal intersection. To collect IDs and passing times from individual vehicles, space-based surveillance systems such as DSRC were adopted. This research developed models to estimate arrival flow rates, delays, and the change rate in delay, by using individual vehicle's travel time data. This real-time signal control algorithm could determine optimal traffic signal timings that minimize intersection delay, based on a linear programming. A micro simulation analysis using CORSIM and RUN TIME EXTENSION verified saturated intersection conditions, and determined the optimal traffic signal timings that minimize intersection delay. In addition, the performance of algorithm varying according to market penetration was examined. In spite of limited results from a specific scenario, this algorithm turned out to be effective as long as the probe rate exceeds 40 percent. Recently, space-based traffic surveillance systems are being installed by various projects, such as Hi-pass, Advanced Transportation Management System (ATMS) and Urban Transportation Information System (UTIS) in Korea. This research has an important significance in that the propose algorithm is a new methodology that accepts the space-based traffic surveillance system in real-time signal operations.