• Title/Summary/Keyword: esterification

Search Result 412, Processing Time 0.025 seconds

Esterification of Fluoroethanol with Methacrylic Acid through Acid-resistant Poly(vinyl alcohol) Pervaporation Membranes (산저항성을 가진 PVA 투과증발막을 이용한 불화에탄올과 메타크릴산의 에스테르화 반응)

  • Kim Jeong-Hoon;Chang Bong-Jun;Lee Yong-Taek;Lee Soo-Bok
    • Membrane Journal
    • /
    • v.16 no.3
    • /
    • pp.230-234
    • /
    • 2006
  • This study discusses an esterification of trifluoroethanol (TFEA) with methacrylic acid (MA) using acid-resistant PVA pervaporation membrane. The acid-resistant PVA membranes, which were prepared via a thermal cross-linking reaction of PVA and EGDE were adopted in the esterification reaction. The effect of reaction conditions such as temperature, acid catalyst content, and initial molar ratio of TFEA/MA was investigated on the conversion of trifluoroethyl-methacrylate (TFEMA). It was found that TFEMA conversion increased with increasing the reaction temperature, the catalyst content, and the initial molar ratio. The economical conversion of TFEMA more than about 90% was obtained at the following reaction conditions: reaction temperature of $90^{\circ}C$, 2.5 wt% of catalyst and initial molar ratio of 1.7.

Optimization and Elucidation of Esterification between Adipic Acid and 1,4-Butane Diol (Adipic acid와 1,4-butane diol의 에스테르화 반응 최적화 및 반응기작 규명)

  • Chung, Suk-Jin;Park, Soo-Nam
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.399-404
    • /
    • 2003
  • Aliphatic polyester, especially poly(butylene adipate)(PBA), is quite biodegradable and one of the most promising polymer materials to be commercialized. Bis(4-hydroxybutyl) adipate (BHBA) formation stage is the first principal process in the production of PBA from adipic acid (AA) and 1,4-butane diol (BD). In this study, we investigated for the effective production of Bis(4-hydroxybutyl) adipate (BHBA), effects of molar ratio of adipic acid (AA) to 1,4-butane diol (BD), catalyst (tetrabutyl titanate, TBT) concentration, and temperature on the reaction rate of esterification between AA and BD were investigated. Initial reaction rate of the esterification decreased with increasing molar ratio of AA to BD and reaction temperature, whereas reaction constant increased with increase in catalyst-concentration. Activation energy values for catalyzed and uncatalyzed esterifications were 198.5 and 94.8 kJ/mol, respectively.

Biotransformation of Intestinal Bacterial Metabolites of Ginseng Saponin to Biologically Active Fatty-acid Conjugates

  • Hasegawa Hideo;Saiki Ikuo
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.317-334
    • /
    • 2002
  • Ginsenosides are metabolized (deglycosylated) by intestinal bacteria to active forms after oral administration. 20(S)-Protopanaxadiol $20-O-{\beta}-D-glucopyranoside$ (M1) and 20(S)-protopanaxatriol (M4) are the main intestinal bacterial metabolites (IBMs) of protopanaxadiol- and protopanaxatriol-type glycosides. M1 was selectively accumulated into the liver soon after its intravenous (i.v.) administration to mice, and mostly excreted as bile; however, some M1 was transformed to fatty acid ester (EMl) in the liver. EM1 was isolated from rats in a recovery dose of approximately $24mol\%.$ Structural analysis indicated that EM1 comprised a family of fatty acid mono-esters of M1. Because EM1 was not excreted as bile as Ml was, it was accumulated in the liver longer than M1. The in vitro cytotoxicity of M1 was attenuated by fatty acid esterification, implying that esterification is a detoxification reaction. However, esterified M1 (EM1) inhibited the growth of B16 melanoma more than Ml in vivo. The in vivo antitumor activity paralleled with the pharmacokinetic behavior. In the case of M4, orally administered M4 was absorbed from the small intestine into the mesenteric lymphatics followed by the rapid esterification of M4 with fatty acids and its spreading to other organs in the body and excretion as bile. The administration of M4 prior to tumor injection abrogated the enhanced lung metastasis in the mice pretreated with 2-chloroadenosine more effectively than in those pretreated with anti-asialo GMl. Both EM1 and EM4 did not directly affect tumor growth in vitro, whereas EM1 promoted tumor cell lysis by lymphocytes, particularly non-adherent splenocytes, and EM4 stimulated splenic NK cells to become cytotoxic to tumor cells. Thus, the esterification of IBM with fatty acids potentiated the antitumor activity of parental IBM through delay of the clearance and through immunostimulation. These results suggest that the fatty acid conjugates of IBMs may be the real active principles of ginsenosides in the body.

  • PDF

An Efficient and Convenient Esterification of Carboxylic Acids Using 4,5-Dichloro-2-[(4-nitrophenyl)sulfonyl]pyridazin-3(2H)-one

  • Kim, Jeum-Jong;Park, Yong-Dae;Kweon, Deok-Heon;Kang, Young-Jin;Kim, Ho-Kyun;Lee, Sang-Gyeong;Cho, Su-Dong;Lee, Woo-Song;Yoon, Yong-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.501-505
    • /
    • 2004
  • Esterification of aliphatic or aromatic carboxylic acids with alcohols using 2-(4-nitrobenzenesulfonyl)-4,5-dichloropyridazin-3(2H)-one (3) in the presence of base in organic solvents gave the corresponding esters in excellent yields

Experimental and Kinetic Studies of Esterification of Glycerol Using Combustion Synthesized SO42-/CeO2-Al2O3

  • Veluturla, Sravanthi;Narula, Archna;Rao, D. Subba;Indraja., S;Kulkarni, Rajeswari. M.
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.592-599
    • /
    • 2018
  • An increase in the global production of biodiesel has resulted in the newfound significance of its byproduct, glycerol. The synthesis of acetins is an economical avenue to enhance the value of glycerol derived from biodiesel. WE developed an eco-friendly process for the synthesis of fuel additives from glycerol using a mixed oxide $SO{_4}^{2-}/CeO_2-Al_2O_3$ as catalyst. The $CeO_2-Al_2O_3$ mixed oxide was synthesized by the combustion method and then sulfated. The characterization of the catalyst was by means of XRD, BET, FTIR, and SEM. The influence of temperature, mole ratio and catalyst loading on yield and selectivity of the acetins was studied for the esterification of glycerol. The reaction rate constants ($k_1$, $k_2$ and $k_3$) were estimated using optimization method in MAT lab, and the activation energies ($E_1$, $E_2$ and $E_3$) were determined by the Arrhenius equation. Furthermore, a kinetic model was developed.

Analysis of the Esterification Process for Poly(ethylene terephthalate)

  • Ahn, Young-Cheol;Park, Soo-Myung
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.399-409
    • /
    • 2003
  • The first esterification reactor in the continuous polymerization of poly(ethylene terephthalate) has been analyzed by solving the material balances for the two-phase system with respect to the solubility of terephthalic acid. The Newton-Raphson method was used to solve the material balance equations instead of the Simplex method that is frequently used for finding a minimum point of a residual rather than a solution of an equation. A solution for the material balance equations, with the constraint of non-zero liquid phase fraction, could not be obtained with the solubility data of Yamada et al., but could be obtained with solubilities over a minimum value that is larger than their data. Thus, the solubility data of Yamada et al. are considered to be too small. On the other hand, the solubility data of Baranova and Kremer are so large that they gave a solution with the liquid phase only. Based on our results, several typical solubility curves satisfying the constraint of a non-zero liquid phase fraction are suggested in this study; we studied the reaction characteristics of the system using these curves. A higher temperature and a lower pressure are preferred for reducing the content of diethylene glycol.

Lipase-catalyzed Esterification of (S)-Naproxen Ethyl Ester in Supercritical Carbon Dioxide

  • Kwon, Cheong-Hoon;Lee, Jong-Ho;Kim, Seung-Wook;Kang, Jeong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1596-1602
    • /
    • 2009
  • A lipase-catalyzed esterification reaction of (S)-naproxen ethyl ester by CALB (Candida antarctica lipase B) enzyme was performed in supercritical carbon dioxide. Experiments were performed in a high-pressure cell for 10 h at a stirring rate of 150 rpm over a temperature range of 313.15 to 333.15 K and a pressure range of 50 to 175 bar. The productivity of (S)-naproxen ethyl ester was compared with the result in ambient condition. The total reaction time and conversion yields of the catalyzed reaction in supercritical carbon dioxide were compared with those at ambient temperature and pressure. The experimental results show that the conversion and reaction rate were significantly improved at critical condition. The maximum conversion yield was 9.9% (216 h) at ambient condition and 68.9% (3 h) in supercritical state. The effects of varying amounts of enzyme and water were also examined and the optimum condition was found (7 g of enzyme and 2% water content).

Effect of $\alpha$-cellulose content in pulps on esterification of cellulose (펄프에 함유된 $\alpha$-셀룰로오스의 함량이 셀룰로오스의 에스테르화반응에 미치는 영향)

  • Lee, Soo;Park, Sang-Hee;Kim, Jin-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.428-433
    • /
    • 2009
  • Cellulose triacetate (CTA) was prepared from cotton linter and pulps which contain various contents of $\alpha$-cellulose. CTA which contains 2.8 of degree of substitution (DS) and 222 of degree of polymerization (DP) was obtained from V-81 pulp under the heterogeneous system. The DS was measured by the titration method, and the DP was obtained by measurement of viscosity. FT-IR spectometer (FT-IR 6300, JASCO) was used to analyze the chemical structure of raw materials and cellulose triacetate, and X-ray diffractometer (X-pert MPD PW3040, Philips) was used to confirm the crystal structure and to calculate the relative crystallinity index (RCI). As $\alpha$-cellulose content in pulp increased, the acetylation yield increased. Besides with a kind of pulp, it contains insoluble residue which was mainly formed due to the formation of glucomannan triacetate and xylan diacetate during the esterification.

Bio-diesel of Vegetable Oils by Lipase Catalyzed Trans-esterification into Continuous Process (연속공정에서 리파제 촉매 전이에스테르화에 의한 식물유의 바이오디젤화)

  • Hyun, Young-Jin;Kim, Hae-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.106-115
    • /
    • 2005
  • Bio-diesel as fatty acid methyl ester was derived from such oils as soybean, peanut and canola oil by lipase catalyzed continuous trans-esterification. So the activation of lipase(Novozym - 435) was kept to be up to 4:1, the limiting molar ratio of methanol to oil under one-step addition of methanol due to the miscibility of oil and methanol through the static mixer for 4hrs and the elimination of glycerol on the surface of lipase by 7wt% silica gel. Therefore the overall yield of fatty acid methyl ester from soybean oil appeared to be 98% at 50$^{\cdot}C$ of reaction temperature under two-steps addition of methanol with 2${\times}$2:1 of methanol to oil molar ratio at an interval of 5.5hrs, 7wt% of lipase, 24 number of mixer elements, 0.2ml/min of flow rate and 7wt% of silica gel.

Preparation and Characteristics of Anionic Surfactant Using Waste Fleshing Scrap (피혁 제조 공정 중 발생하는 폐돈지를 이용한 음이온성 계면활성제 제조 및 특성)

  • Shin, Soo-Beom;Min, Byung-Wook;Yang, Seung-Hun;Park, Min-Seok;Won, Gi-Chun;Paek, Doo-Hyeon
    • Textile Coloration and Finishing
    • /
    • v.18 no.6 s.91
    • /
    • pp.31-36
    • /
    • 2006
  • Study has been made for producing anionic surfactant using waste fleshing scraps from the leather making process through refining, esterification, sulfonation and blending processes. As a most optimum lard oil refining method, refining was carried out for 4 hours under temperature of $120^{\circ}C$ and approximately 200 mbar vacuum, which gave a recovery of more than 80% lard oil. Refined lard oil obtained thus was undergone methlyl-esterification, then sulfonated to make a degreasing agent. By methyl-esterification using lard oil, more than 85% of fatty acid and $12{\sim}13%$ of glycerine were extracted from the oil. Sulfonation of the extracted fatty acid ester lard oil has shown most optimum at $15{\sim}20%$ chlorosulfonic acid content, and the content of bonding sulfate at this time was higher than 3.5%. Finally the followed anionic surfactant having degreasing force of 80% and higher could be made by blending process.