• 제목/요약/키워드: esophageal cancer cells

검색결과 61건 처리시간 0.03초

VEGF-C and VEGF-D Expression and its Correlation with Lymph Node Metastasis in Esophageal Squamous Cell Cancer Tissue

  • Yang, Zeng;Wang, Yong-Gang;Su, Kai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권1호
    • /
    • pp.271-274
    • /
    • 2015
  • Background: To explore vascular endothelial growth factor C (VEGF-C) and VEGF-D expression and its correlation with lymph node metastasis in esophageal squamous cell cancer (ESCC) tissue. Materials and Methods: Immunohistochemical methods were applied to detect the levels of VEGF-C and VEGF-D expression in 64 surgicall removal ESCC tissues, tissues adjacent to cancer and normal tissues, and the relationship between VEGF-C and VEGF-D expression and lymph node metastasis was analyzed. Results: Both VEGF-C and VEGF-D were expressed by varying degrees in esophageal cancer tissue, the tissue adjacent to cancer and normal tissue, and the positive expression rate went down successively. The positive expression rates of VEGF-C (59.4%) and VEGF-D (43.8%) in esophageal cancer tissue were significantly higher than in the tissue adjacent to cancer (34.4%, 15.6%) and normal tissue (20.3%, 12.5%), respectively, in which significant differences were manifested (p<0.01). Positive expression rates of VEGF-C and VEGF-D in esophageal cancers with lymph node metastasis were markedly higher than without such metastasis (p<0.01), while those in the tissue with TNM staging I~II were markedly lower than that with TNM staging III~IV (p<0.01). Conclusions: Both VEGF-C and VEGF-D are highly expressed in ESCC tissue, which may be related to the lymph node metastasis of cancer cells. Hence, VEGF-C and VEGF-D can be clinically considered as important reference indexes of lymph node metastasis in esophageal cancer.

Bidirectional Regulation of Manganese Superoxide Dismutase (MnSOD) on the Radiosensitivity of Esophageal Cancer Cells

  • Sun, Guo-Gui;Hu, Wan-Ning;Wang, Ya-Di;Yang, Cong-Rong;Lu, Yi-Fang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권7호
    • /
    • pp.3015-3023
    • /
    • 2012
  • The mitochondrial antioxidant protein manganese superoxide dismutase (MnSOD) may represent a new type of tumor suppressor protein. Overexpression of the cDNA of this gene by plasmid or recombinant lentiviral transfection in various types of cancer leads to growth suppression both in vitro and in vivo. We previously determined that changes in MnSOD expression had bidirectional effects on adriamycin (ADR) when combined with nitric oxide (NO). Radiation induces free radicals in a manner similar to ADR, so we speculated that MnSOD combined with NO would also have a bidirectional effect on cellular radiosensitivity. To examine this hypothesis, TE-1 human esophageal squamous carcinoma cells were stably transfected using lipofectamine with a pLenti6-DEST plasmid containing human MnSOD cDNA at moderate to high overexpression levels or with no MnSOD insert. Blastidicin-resistant colonies were isolated, grown, and maintained in culture. We found that moderate overexpression of MnSOD decreased growth rates, plating efficiency, and increased apoptosis. However, high overexpression increased growth rates, plating efficiency, and decreased apoptosis. When combined with NO, moderate overexpression of MnSOD increased the radiosensitivity of esophageal cancer cells, whereas high MnSOD overexpression had the opposite effect. This finding suggests a potential new method to kill certain radioresistant tumors and to provide radioresistance to normal cells.

Roles of GST-π and polβ Genes in Chemoresistance of Esophageal Carcinoma Cells

  • Tang, Yue;Xuan, Xiao-Yan;Li, Min;Dong, Zi-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권12호
    • /
    • pp.7375-7379
    • /
    • 2013
  • The main aim of this study was to investigate the roles of GST-${\pi}$ and $pol{\beta}$ genes in the chemoresistance of esophageal carcinoma cells. Eukaryotic expression vectors containing each gene were constructed and transfected into EC9706 cells, and the biological effects of the two genes assessed based on a resistance index. We additionally investigated the in vitro and in vivo anti-resistance effects of GST-${\pi}$ and $pol{\beta}$ genes using recombinant lentiviruses carrying siRNAs against the two genes. Our results showed that upregulation of GST-${\pi}$ and $pol{\beta}$ genes suppresses chemosensitivity of esophageal carcinoma cells to cisplatin, while downregulation of these two genes with RNAi technology reverses this chemoresistance. Multi-site injection of recombinant lentivirus targeting the GST-${\pi}$ gene into transplanted cDDP tumors effectively reversed their chemoresistant phenotype. However, the same treatment against the $pol{\beta}$ gene did not lead to significant efficacy against chemoresistance.

Growth, Clonability, and Radiation Resistance of Esophageal Carcinoma-derived Stem-like Cells

  • Li, Jian-Cheng;Liu, Di;Yang, Yan;Wang, Xiao-Ying;Pan, Ding-Long;Qiu, Zi-Dan;Su, Ying;Pan, Jian-Ji
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권8호
    • /
    • pp.4891-4896
    • /
    • 2013
  • Objective: To separate/enrich tumor stem-like cells from the human esophageal carcinoma cell line OE-19 by using serum-free suspension culture and to identify their biological characteristics and radiation resistance. Methods: OE-19 cells were cultivated using adherent and suspension culture methods. The tumor stem-like phenotype of CD44 expression was detected using flow cytometry. We examined growth characteristics, cloning capacity in soft agar, and radiation resistance of 2 groups of cells. Results: Suspended cells in serum-free medium formed spheres that were enriched for CD44 expression. CD44 was expressed in 62.5% of suspended cells, but only in 11.7% of adherent cells. The suspended cells had greater capacity for proliferation and colony formation in soft agar than the adherent cells. When the suspended and adherent cells were irradiated at 5 Gy, 10 Gy, or 15 Gy, the proportion of CD44+ suspended cells strongly and weakly positive for CD44 was 77.8%, 66.5%, 57.5%; and 21.7%, 31.6%, 41.4%, respectively. In contrast, the proportion of CD44+ adherent cells strongly positive for CD44 was 18.9%, 14.%, and 9.95%, respectively. When the irradiation dose was increased to 30 Gy, the survival of the suspended and adherent cells was significantly reduced, and viable CD44+ cells were not detected. Conclusion: Suspended cell spheres generated from OE-19 esophageal carcinoma cells in serum-free stem medium are enriched in tumor stem-like cells. CD44 may be a marker for these cells.

RNAi-induced K-Ras Gene Silencing Suppresses Growth of EC9706 Cells and Enhances Chemotherapy Sensitivity of Esophageal Cancer

  • Wang, Xin-Jie;Zheng, Yu-Ling;Fan, Qing-Xia;Zhang, Xu-Dong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권12호
    • /
    • pp.6517-6521
    • /
    • 2012
  • To analyze the growth, proliferation, apoptosis, invasiveness and chemotherapy sensitivity of EC9706 cells after K-Ras gene silencing, an expression carrier pSilencer-siK-Ras was constructed, and the EC9706 cell line was transfected using a liposome technique. Six groups were established: Control, siRNA NC (transfected with empty vector pSilencer2.1); Ras siRNA (transfected with pSilencer-siK-Ras2); Paclitaxel; Paclitaxel + siRNA NC; and Ras siRNA + Paclitaxel. After the treatment, RT-PCR, Western blotting, MTT assay, flow cytometry and the Transwell technique were used to assess expression of K-Ras mRNA and protein in EC9706 cells, as well as cell growth, proliferation, apoptosis and invasiveness. The effect of Paclitaxel chemotherapy was also tested. pSilencer-siK-Ras2 effectively down-regulated expression of K-Ras mRNA and protein in EC9706 cells, growth being significantly inhibited. Flow cytometry indicated obvious apoptosis of cells in the experimental group, with arrest in the G1 phase; cell migration ability was also reduced. After pSilencer-siK-Ras2 transfection or the addition of Paclitaxel, EC9706 cells were suppressed to different extents; the suppressive effect was strengthened by combined treatment. The results suggested that RNAi-induced K-Ras gene silencing could enhance chemotherapy sensitivity of esophageal cancer.

식도암 조직에시 p53 및 nm23 유전자 발현의 임상적 의의 (Clinical Significance of p53 Gene and nm23 Gene Expression in Esophageal Cancer)

  • 박건;이종호;사영조;진웅;권종범;박재길;이선희;곽문섭
    • Journal of Chest Surgery
    • /
    • 제37권3호
    • /
    • pp.261-266
    • /
    • 2004
  • 식도암 환자에서 조기진단 및 수술적 치료 방법의 상당한 진전에도 불구하고 환자의 예후는 여전히 좋지 않다. p53 종양 억제유전자는 세포의 성장과 증식을 조절하는 것으로 알려져 있고 nm23 유전자는 설치류 흑색종에서 종양의 전이억제 효과가 있다고 알려져 있다. 이 실험은 p53과 nm23유전자 발현과 식도암 환자의 임상병리학적인 특징상의 관련성을 알아보고자 하였다. 가톨릭대학교 의과대학 부속 성모병원에서 수술한 식도암 환자 40명의 조직을 대상으로 하였고, p53 변이형 단백질과 nm23단백질을 면역화학적 염색을 시행하여 <10% 양성 종양세포 : negative ; 10∼30% 양성 종양세포: +; 30∼50% 양성 종양세포 : ++; >50% 양성 종양세포: +++의 4개의 군으로 분류하였고, 또한 종양의 침습 정도는 none, mild, moderate, severe로 분류하여 평가하였다. p53 변이형 단백질과 nm23 단백질의 과발현은 생존율 및 임상병리학적 특징과 연관성이 없었고, 또한 p53 및 nm23유전자 발현의 조합 분석에서도 유의한 상관관계를 발견하지 못하였다.

MSP58 Knockdown Inhibits the Proliferation of Esophageal Squamous Cell Carcinoma in Vitro and in Vivo

  • Xu, Chun-Sheng;Zheng, Jian-Yong;Zhang, Hai-Long;Zhao, Hua-Dong;Zhang, Jing;Wu, Guo-Qiang;Wu, Lin;Wang, Qing;Wang, Wei-Zhong;Zhang, Jian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권7호
    • /
    • pp.3233-3238
    • /
    • 2012
  • Esophageal carcinoma (EC) is one of the most aggressive cancers with a poor prognosis. Understanding the molecular mechanisms underlying esophageal cancer progression is a high priority for improved EC diagnosis and prognosis. Recently, MSP58 was shown to behave as an oncogene in colorectal carcinomas and gliomas. However, little is known about its function in esophageal carcinomas. We therefore examined the effects of MSP58 knockdown on the growth of esophageal squamous cell carcinoma (ESCC) cells in vitro and in vivo in order to gain a better understanding of its potential as a tumor therapeutic target. We employed lentiviral-mediated small hairpin RNA (shRNA) to knock down the expression of MSP58 in the ESCC cell lines Eca-109 and EC9706 and demonstrated inhibition of ESCC cell proliferation and colony formation in vitro. Furthermore, flow cytometry and western blot analyses revealed that MSP58 depletion induced cell cycle arrest by regulating the expression of P21, CDK4 and cyclin D1. Notably, the downregulation of MSP58 significantly inhibited the growth of ESCC xenografts in nude mice. Our results suggest that MSP58 may play an important role in ESCC progression.

Molecular and Functional Characterization of Choline Transporter-Like Proteins in Esophageal Cancer Cells and Potential Therapeutic Targets

  • Nagashima, Fumiaki;Nishiyama, Ryohta;Iwao, Beniko;Kawai, Yuiko;Ishii, Chikanao;Yamanaka, Tsuyoshi;Uchino, Hiroyuki;Inazu, Masato
    • Biomolecules & Therapeutics
    • /
    • 제26권4호
    • /
    • pp.399-408
    • /
    • 2018
  • In this study, we examined the molecular and functional characterization of choline uptake in the human esophageal cancer cells. In addition, we examined the influence of various drugs on the transport of [$^3H$]choline, and explored the possible correlation between the inhibition of choline uptake and apoptotic cell death. We found that both choline transporter-like protein 1 (CTL1) and CTL2 mRNAs and proteins were highly expressed in esophageal cancer cell lines (KYSE series). CTL1 and CTL2 were located in the plasma membrane and mitochondria, respectively. Choline uptake was saturable and mediated by a single transport system, which is both $Na^+$-independent and pH-dependent. Choline uptake and cell viability were inhibited by various cationic drugs. Furthermore, a correlation analysis of the potencies of 47 drugs for the inhibition of choline uptake and cell viability showed a strong correlation. Choline uptake inhibitors and choline deficiency each inhibited cell viability and increased caspase-3/7 activity. We conclude that extracellular choline is mainly transported via a CTL1. The functional inhibition of CTL1 by cationic drugs could promote apoptotic cell death. Furthermore, CTL2 may be involved in choline uptake in mitochondria, which is the rate-limiting step in S-adenosylmethionine (SAM) synthesis and DNA methylation. Identification of this CTL1- and CTL2-mediated choline transport system provides a potential new target for esophageal cancer therapy.

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone Induces Retinoic Acid Receptor β Hypermethylation through DNA Methyltransferase 1 Accumulation in Esophageal Squamous Epithelial Cells

  • Wang, Jing;Zhao, Shu-Lei;Li, Yan;Meng, Mei;Qin, Cheng-Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권5호
    • /
    • pp.2207-2212
    • /
    • 2012
  • Overexpression of DNA methyltransferase 1 (DNMT1) has been detected in many cancers. Tobacco exposure is known to induce genetic and epigenetic changes in the pathogenesis of malignancy. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is an important carcinogen present in tobacco smoke; however the detailed molecular mechanism of how NNK induces esophageal carcinogenesis is still unclear. We found that DNMT1 was overexpressed in ESCC tissues compared with paired non-cancerous tissues, the overexpression being correlated with smoking status and low expression of $RAR{\beta}$. The latter could be upregulated by NNK treatment in Het-1A cells, and the increased DNMT1 expression level reflected promoter hypermethylation and downregulation of retinoic acid receptor ${\beta}$($RAR{\beta}$). RNA interference mediated knockdown of DNMT1 resulted in promoter demethylation and upregulation of $RAR{\beta}$ in KYSE30 and TE-1 cells. 3-(4,5-Dimethyl-thiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometric analysis demonstrated that NNK treatment in Het-1A cells could enhance cell proliferation and inhibit cell apoptosis in a dose-dependent manner. In conclusion, DNMT1 overexpression is correlated with smoking status and low expression of $RAR{\beta}$ in esophageal SCC patients. NNK could induce $RAR{\beta}$ promoter hypermethylation through upregulation of DNMT1 in esophageal squamous epithelial cells, finally leading to enhancement of cell proliferation and inhibition of apoptosis.

Effects of Down-regulation of HDAC6 Expression on Proliferation, Cell Cycling and Migration of Esophageal Squamous Cell Carcinoma Cells and Related Molecular Mechanisms

  • Li, Ning;Tie, Xiao-Jing;Liu, Pei-Jie;Zhang, Yan;Ren, Hong-Zheng;Gao, Xin;Xu, Zhi-Qiao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권2호
    • /
    • pp.685-689
    • /
    • 2013
  • Objective: To study the effects of down-regulation of HDAC6 expression on proliferation, cell cycling and migration of esophageal squamous cell carcinoma (ESCC) cells and related molecular mechanisms. Methods: ESCC cell line EC9706 cells were randomly divided into untreated (with no transfection), control siRNA (transfected with control siRNA) and HDAC6 siRNA (transfected with HDAC6 small interfering RNA) groups. Effects of HDAC6 siRNA interference on expression of HDAC6 mRNA and protein in EC9706 cells were investigated by semi-quantitative RT-PCR, Western blotting and immunocytochemistry methods. Effects of down-regulation of HDAC6 expression on cell proliferation, cell cycle, and cell migration were studied using a CCK-8 kit, flow cytometry and Boyden chambers, respectively. Changes of mRNA and protein expression levels of cell cycle related factor (p21) and cell migration related factor (E-cadherin) were investigated by semi-quantitative RT-PCR and Western blotting methods. Results: After transfection of HDAC6 siRNA, the expression of HDAC6 mRNA and protein in EC9706 cells was significantly downregulated. In the HDAC6 siRNA group, cell proliferation was markedly inhibited, the percentage of cells in G0/G1 phase evidently increased and the percentage of cells in S phase decreased, and the number of migrating cells significantly and obviously decreased. The mRNA and protein expression levels of p21 and E-cadherin in the HDAC6 siRNA group were significantly higher than those in the untreated group and the control siRNA group, respectively. Conclusions: HDAC6 siRNA can effectively downregulate the expression of HDAC6 mRNA and protein in EC9706 cells. Down-regulation of HDAC6 expression can obviously inhibit cell proliferation, arrest cell cycling in the G0/G1 phase and reduce cell migration. The latter two functions may be closely related with the elevation of mRNA and protein expression of p21 and E-cadherin.