• 제목/요약/키워드: error sensitivity analysis

검색결과 383건 처리시간 0.029초

An approach for optimal sensor placement based on principal component analysis and sensitivity analysis under uncertainty conditions

  • Beygzadeh, Sahar;Torkzadeh, Peyman;Salajegheh, Eysa
    • Structural Monitoring and Maintenance
    • /
    • 제9권1호
    • /
    • pp.59-80
    • /
    • 2022
  • In the present study, the objective is to detect the structural damages using the responses obtained from the sensors at the optimal location under uncertainty conditions. Reducing the error rate in damage detection process due to responses' noise is an important goal in this study. In the proposed algorithm for optimal sensor placement, the noise of responses recorded from the sensors is initially reduced using the principal component analysis. Afterward, the optimal sensor placement is obtained by the damage detection equation based sensitivity analysis. The sensors are placed on degrees of freedom corresponding to the minimum error rate in structural damage detection through this procedure. The efficiency of the proposed method is studied on a truss bridge, a space dome, a double-layer grid as well as a three-story experimental frame structure and the results are compared. Moreover, the performance of the suggested method is compared with three other algorithms of Average Driving Point Residue (ADPR), Effective Independence (EI) method, and a mass weighting version of EI. In the examples, young's modulus, density, and cross-sectional areas of the elements are considered as uncertainty parameters. Ultimately, the results have demonstrated that the presented algorithm under uncertainty conditions represents a high accuracy to obtain the optimal sensor placement in the structures.

고밀도 광저장 기기용 틸트 액추에이터 동특성 분석 및 평가 (Evaluation and Analysis of Dynamic Characteristics in Tilt Actuator for High Density Optical Storage Devices)

  • 김석중;이용훈;최한국
    • 소음진동
    • /
    • 제10권4호
    • /
    • pp.584-595
    • /
    • 2000
  • We design a new actuator for high density optical device in order to control the radial tilting motion. The newly designed actuator makes it possible to control the tilting motion actively, while the coventional actuator compress tilting motion with passive spring. First of all, We present 3-dimensional modeling of actuator and accomplish the modal analysis and magnetic analysis of actuator. Due to these results, a new designed actuator has performance of high sensitivity and high second resonance frequency. Secondly, We present the 3-DOF dynamic modeling of the 4-wire spring type actuator. sensitivity analysis is performed to consider the assembling error, such as the difference of mass center and force center. From these results, the sensitivities of rotation due to the assembly error are revealed and design criteria of rotation is presented. And experimental results of a newly designed actuator are presented and compared with theoretical results. Finally, We propose a dynamic tilt compensation and high acceleration actuator for high density optical storage devices.

  • PDF

파장 분할 다중화 시스템의 수신감도 개선 (Receive Sensitivity Improvement of Wavelength Division Multiplexing System)

  • 김선엽;박형근
    • 한국정보통신학회논문지
    • /
    • 제10권3호
    • /
    • pp.579-585
    • /
    • 2006
  • 본 논문에서는 스펙트럼 분할된 WDM시스템의 성능해석시, 광전치 증폭기를 사용하여 일반적인 핀(PIN) 다이오드를 채용한 수신기를 통해 얻을 수 있는 수신감도를 개선하는 방법에 대해 해석하였다. 또한 온-오프키잉(OOK: On Off Keying)과 주파수 천이키잉(FSK: Frequency Shift Keying) 전송을 이용하여 표준에러 확률을 유지하기 위해 필요로 하는 비트당 광자의 수를 계산한 후 수신기에서 광신호와 전기신호의 다양한 대역폭 비가 변화하는 경우에 대하여 위의 값을 다시 도출함으로써 수신감도를 해석하였다.

수치 민감도 해석을 통한 파랑중 FPSO운동 시뮬레이션 (Motion Simulation of FPSO in Waves through Numerical Sensitivity Analysis)

  • 김제인;박일룡;서성부;강용덕;홍사영;남보우
    • 한국해양공학회지
    • /
    • 제32권3호
    • /
    • pp.166-176
    • /
    • 2018
  • This paper presents a numerical sensitivity analysis for the simulation of the motion performance of an offshore structure in waves using computational fluid dynamics (CFD). Starting with 2D wave simulations with varying numerical parameters such as grid spacing and CFL value, proper numerical conditions were found for accurate wave propagation that avoids numerical diffusion problems. These results were mapped on 2D error distributions of wave amplitude and wave length against the numbers of grids per wave length and per wave height under a given CFL condition. Finally, the 2D numerical sensitivity result was validated through CFD simulation of the motion of a FPSO in waves showing good accuracy in motion RAOs compared with existing potential flow solutions.

발전기 모델링 정도에 의한 고유치 감도계수에 미치는 영향해석 (Analysis of the first order eigenvalue sensitivity affected by generator model)

  • 조언중;이군재;김덕영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 A
    • /
    • pp.119-121
    • /
    • 2003
  • In small signal stability analysis of power systems, eigenvalue analysis is the most useful method and the detailed modeling of generator gives an important effect to the eigenvalues. Generator full model is used for precise dynamic analysis of generators and controllers while two-axis model is used for multimachine systems because of the reduced order of the state matrix. Also, the eigenvalue sensitivity coefficients are used for optimization of controller parameters to improve system stability. This paper compare the first order eigenvalue sensitivity coefficients of controllers in case of generator full model with those of two-axis model. As a result of an example the estimated eigenvalues using sensitivity coefficients in case of generator full model is very close to those of state matrix within 1% error ratios.

  • PDF

An evolutionary approach for predicting the axial load-bearing capacity of concrete-encased steel (CES) columns

  • Armin Memarzadeh;Hassan Sabetifar;Mahdi Nematzadeh;Aliakbar Gholampour
    • Computers and Concrete
    • /
    • 제31권3호
    • /
    • pp.253-265
    • /
    • 2023
  • In this research, the gene expression programming (GEP) technique was employed to provide a new model for predicting the maximum loading capacity of concrete-encased steel (CES) columns. This model was developed based on 96 CES column specimens available in the literature. The six main parameters used in the model were the compressive strength of concrete (fc), yield stress of structural steel (fys), yield stress of steel rebar (fyr), and cross-sectional areas of concrete, structural steel, and steel rebar (Ac, As and Ar respectively). The performance of the prediction model for the ultimate load-carrying capacity was investigated using different statistical indicators such as root mean square error (RMSE), correlation coefficient (R), mean absolute error (MAE), and relative square error (RSE), the corresponding values of which for the proposed model were 620.28, 0.99, 411.8, and 0.01, respectively. Here, the predictions of the model and those of available codes including ACI ITG, AS 3600, CSA-A23, EN 1994, JGJ 138, and NZS 3101 were compared for further model assessment. The obtained results showed that the proposed model had the highest correlation with the experimental data and the lowest error. In addition, to see if the developed model matched engineering realities and corresponded to the previously developed models, a parametric study and sensitivity analysis were carried out. The sensitivity analysis results indicated that the concrete cross-sectional area (Ac) has the greatest effect on the model, while parameter (fyr) has a negligible effect.

준해석적 비선형 설계민감도를 위한 보정변위하중법 (Consistent Displacement Load Method for Nonlinear Semi-Analytical Design Sensitivity Analysis)

  • 이민욱;유정훈;이태희
    • 대한기계학회논문집A
    • /
    • 제29권9호
    • /
    • pp.1209-1216
    • /
    • 2005
  • Three methods for design sensitivity such as numerical differentiation, analytical method and semi-analytical method have been developed for the last three decades. Although analytical design sensitivity analysis is exact, it is hard to implement for practical design problems. Therefore, numerical method such as finite difference method is widely used to simply obtain the design sensitivity in most cases. The numerical differentiation is sufficiently accurate and reliable for most linear problems. However, it turns out that the numerical differentiation is inefficient and inaccurate because its computational cost depends on the number of design variables and large numerical errors can be included especially in nonlinear design sensitivity analysis. Thus semi-analytical method is more suitable for complicated design problems. Moreover semi-analytical method is easy to be performed in design procedure, which can be coupled with an analysis solver such as commercial finite element package. In this paper, implementation procedure for the semi-analytical design sensitivity analysis outside of the commercial finite element package is studied and computational technique is proposed, which evaluates the pseudo-load for design sensitivity analysis easily by using the design variation of corresponding internal nodal forces. Errors in semi-analytical design sensitivity analysis are examined and numerical examples are illustrated to confirm the reduction of numerical error considerably.

Modeling Alignment Experiment Errors for Improved Computer-Aided Alignment

  • Kim, Yunjong;Yang, Ho-Soon;Song, Jae-Bong;Kim, Sug-Whan;Lee, Yun-Woo
    • Journal of the Optical Society of Korea
    • /
    • 제17권6호
    • /
    • pp.525-532
    • /
    • 2013
  • Contrary to the academic interests of other existing studies elsewhere, this study deals with how the alignment algorithms such as sensitivity or Differential Wavefront Sampling (DWS) can be better used under effects from field, compensator positioning and environmental errors unavoidable from the shop-floor alignment work. First, the influences of aforementioned errors to the alignment state estimation was investigated with the algorithms. The environmental error was then found to be the dominant factor influencing the alignment state prediction accuracy. Having understood such relationship between the distorted system wavefront caused by the error sources and the alignment state prediction, we used it for simulated and experimental alignment runs for Infrared Optical System (IROS). The difference between trial alignment runs and experiment was quite close, independent of alignment methods; 6 nm rms for sensitivity method and 13 nm rms for DWS. This demonstrates the practical usefulness and importance of the prior error analysis using the alignment algorithms before the actual alignment runs begin. The error analysis methodology, its application to the actual alignment of IROS and their results are described together with their implications.

발전기 모델링 정도에 의한 고유치 일차${\cdot}$이차 감도계수 비교 (Comparison of the first and the second order eigenvalue sensitivity coefficients affected by generator modeling)

  • 김덕영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.345-347
    • /
    • 2004
  • In small signal stability analysis of power systems, eigenvalue analysis is the most useful method and the detailed modeling of generator has an important effect to the eigenvalues. Generator full model is used for precise dynamic analysis of generators and controllers while two-axis model is used for multi-machine systems because of the reduced order of the state matrix. Also, the eigenvalue sensitivity coefficients are used for optimizing controller parameters to improve system stability. This paper compare the first and second order eigenvalue sensitivity coefficients of controllers using generator full model with those of two-axis model. As a result of an example, the estimated eigenvalues using the first and the second eigenvalue sensitivity coefficients using generator full model is very close to those of state matrix. Also the error ratios throughout a wide range of controller parameters is less than $1\%$.

  • PDF

광통신시스템의 PIN 수신기 수신감도 해석 (An Analysis of Receiving Sensitivity of PIN Receiver for Optical Communication System)

  • 김선엽
    • 한국산학기술학회논문지
    • /
    • 제12권5호
    • /
    • pp.2272-2278
    • /
    • 2011
  • 광통신 시스템에서 신호와 부가적인 잡음의 통계적인 특성에 대해 다양한 방법으로 평가하는 것은 시스템의 성능 최적화를 위해 필수적인데, 본 연구에서는 수신기의 성능 평가 방법으로 다양한 에러 확률을 대역폭과 비트수의 함수(m)로 표현하여 수신기의 성능을 평가를 통하여 광통신시스템에서 사용되고 있는 PIN 수신기의 수신감도를 해석하였고 시뮬레이션을 통해 이를 확인하였다. 그 결과 m=20인 경우, PIN 수신기의 수신 감도는 주어진 에러 확률을 유지하기 위해 대략 $9.2{\times}10^4$ 광자/비트 정도가 필요함을 확인 할 수 있었다.