• Title/Summary/Keyword: error range

Search Result 2,811, Processing Time 0.029 seconds

Comparison of Radioactivity Measurement with Radionuclide Calibrators in Nuclear Medicine Centers (의료용 방사능측정기의 측정 정확도 평가)

  • Son, Hye-Kyung;Kim, Ji-Hye;Lim, Chun-Il;Yang, Hyun-Kyu;Park, Ki-Jung;Oh, Heon-Jin;Kim, Hyeog-Ju;Kim, Dong-Sup
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.16-21
    • /
    • 2010
  • To acquire good image quality and to minimize unnecessary radiation dose to patients, it is important to ensure that the radiopharmaceutical administered is accurately measured. Quality control of radionuclide calibrators should be performed to achieve these goals. The purpose of this study is to support the quality control of radionuclide calibrators in nuclear medicine centers and to investigate the level of measurement accuracy of the radionuclide calibrators. 58 radionuclide calibrators from 45 nuclear medicine centers, 74 radionuclide calibrators from 58 nuclear medicine centers, and 60 radionuclide calibrators from 45 nuclear medicine centers were tested with I-131, Tc-99m and I-123, respectively. The results showed that 81% of calibrators for I-131, 61% of calibrators for Tc-99m and 67% of calibrators for I-123 were within ${\pm}5%$. 17% of calibrators for I-131, 20% of calibrators for Tc-99m and 15% of calibrators for I-123 had a deviation in the range 5%< $|{\Delta}|{\leq}10%$. 2% of calibrators for I-131, 19% of calibrators for Tc-99m and 18% of calibrators for I-123 had a deviation of $|{\Delta}|$ >10%. Follow-up measurements were performed on the calibrators whose error exceeded the ${\pm}10%$ limit. As a result, some of the calibrator showed an improvement and their deviation decreased below the ${\pm}10%$ limit. The results have shown that such comparisons are necessary to improve the accuracy of the measurement and to identify malfunctioning radionuclide calibrators.

Climate Change Impact on Nonpoint Source Pollution in a Rural Small Watershed (기후변화에 따른 농촌 소유역에서의 비점오염 영향 분석)

  • Hwang, Sye-Woon;Jang, Tae-Il;Park, Seung-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.4
    • /
    • pp.209-221
    • /
    • 2006
  • The purpose of this study is to analyze the effects of climate change on the nonpoint source pollution in a small watershed using a mid-range model. The study area is a basin in a rural area that covers 384 ha with a composition of 50% forest and 19% paddy. The hydrologic and water quality data were monitored from 1996 to 2004, and the feasibility of the GWLF (Generalized Watershed Loading function) model was examined in the agricultural small watershed using the data obtained from the study area. As one of the studies on climate change, KEI (Korea Environment Institute) has presented the monthly variation ratio of rainfall in Korea based on the climate change scenario for rainfall and temperature. These values and observed daily rainfall data of forty-one years from 1964 to 2004 in Suwon were used to generate daily weather data using the stochastic weather generator model (WGEN). Stream runoff was calibrated by the data of $1996{\sim}1999$ and was verified in $2002{\sim}2004$. The results were determination coeff, ($R^2$) of $0.70{\sim}0.91$ and root mean square error (RMSE) of $2.11{\sim}5.71$. Water quality simulation for SS, TN and TP showed $R^2$ values of 0.58, 0.47 and 0.62, respectively, The results for the impact of climate change on nonpoint source pollution show that if the factors of watershed are maintained as in the present circumstances, pollutant TN loads and TP would be expected to increase remarkably for the rainy season in the next fifty years.

Determination of secondary aliphatic amines in surface and tap waters as benzenesulfonamide derivatives using GC-MS (Benzenesulfonamide 유도체로 GC-MS를 사용한 지표수 및 수돗물 중 2차 지방족 아민의 분석)

  • Park, Sunyoung;Jung, Sungjin;Kim, Yunjeong;Kim, Hekap
    • Analytical Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.96-105
    • /
    • 2018
  • This study aimed to improve the method for detecting eight secondary aliphatic amines (SAAs), so as to measure their concentrations in fresh water and tap water samples. NaOH (8 mL, 10 M) and benzenesulfonyl chloride (2 mL) were added to a water sample (200 mL), and the mixture was stirred at $80^{\circ}C$ for 30 min. An additional NaOH solution (10 mL) was added and the stirring was continued for another 30 min. The pH of the cooled mixture was adjusted to 5.5-6.0 by adding HCl (35 %), and the SAAs were extracted using dichloromethane (50 mL). This extraction was repeated once. The extract was then washed with $NaHCO_3$ (15 mL, 0.05 M) and dried over $Na_2SO_4$ (4 g). The extract was finally concentrated to 0.1 mL, of which $1{\mu}L$ was analyzed for SAAs by GC-MS. The linearity of the spike calibration curves was high ($r^2=0.9969-0.9996$). The detection limits of the method ranged from 0.01 to $0.20{\mu}g/L$, and its repeatability and reproducibility (expressed as relative standard deviation) were both less than 10 % (6.6-9.4 %). Its accuracy (measured in percentage error) ranged between 2.4 % and 6.1 %. The established method was applied to the analysis of five surface water and 82 tap water samples. Dimethylamine was the only SAA detected in all the water samples, and its average concentration was $0.79{\mu}g/L$ (range: $0.20-2.54{\mu}g/L$). Therefore, this study improved the analytical method for SAAs in surface water and tap water, and the regional and seasonal concentration distributions were obtained.

Koreanized Analysis System Development for Groundwater Flow Interpretation (지하수유동해석을 위한 한국형 분석시스템의 개발)

  • Choi, Yun-Yeong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.3 s.10
    • /
    • pp.151-163
    • /
    • 2003
  • In this study, the algorithm of groundwater flow process was established for koreanized groundwater program development dealing with the geographic and geologic conditions of the aquifer have dynamic behaviour in groundwater flow system. All the input data settings of the 3-DFM model which is developed in this study are organized in Korean, and the model contains help function for each input data. Thus, it is designed to get detailed information about each input parameter when the mouse pointer is placed on the corresponding input parameter. This model also is designed to easily specify the geologic boundary condition for each stratum or initial head data in the work sheet. In addition, this model is designed to display boxes for input parameter writing for each analysis condition so that the setting for each parameter is not so complicated as existing MODFLOW is when steady and unsteady flow analysis are performed as well as the analysis for the characteristics of each stratum. Descriptions for input data are displayed on the right side of the window while the analysis results are displayed on the left side as well as the TXT file for this results is available to see. The model developed in this study is a numerical model using finite differential method, and the applicability of the model was examined by comparing and analyzing observed and simulated groundwater heads computed by the application of real recharge amount and the estimation of parameters. The 3-DFM model is applied in this study to Sehwa-ri, and Songdang-ri area, Jeju, Korea for analysis of groundwater flow system according to pumping, and obtained the results that the observed and computed groundwater head were almost in accordance with each other showing the range of 0.03 - 0.07 error percent. It is analyzed that the groundwater flow distributed evenly from Nopen-orum and Munseogi-orum to Wolang-bong, Yongnuni-orum, and Songja-bong through the computation of equipotentials and velocity vector using the analysis result of simulation which was performed before the pumping started in the study area. These analysis results show the accordance with MODFLOW's.

Radiotherapic Valuation of Paraffin Wax for Patients with Oral Cancer (구강암 환자 치료시 치과용 기초상 왁스(Paraffin Wax)의 유용성 평가)

  • Na, Kyoung-Su;Seo, Seuk-Jin;Lee, Je-Hee;Yoo, Sook-Heun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.1
    • /
    • pp.41-49
    • /
    • 2011
  • Purpose: This study is designed to investigate radiotherapic valuation of Paraffin Wax, which is newly formed for this study and generally utilized in dentistry, and Mouth Piece and Putty impression, which are commonly used in radiotherapy, for oral cavity as a compensator. Materials and Methods: Each compensator was formed by $10{\times}10{\times}1cm$ and measured radiation dose attenuation ratio with reference of water phantom which is made of tissue-equivalent materials. Two patients with oral cancer underwent DRR (Digitally Reconstructed Radiogrph) of Offline Review Program of Aria System and Portal vision for 5 times for each material to evaluate reproducibility by each filling materials. Moreover, MU (monitor unit) changes by dose absorption were considered in the case of inevitable implication of an filling materials in the range for radiotherapy. Results: Radiation dose attenuation ratios were shown -0.7~+3.7% for Mouth Piece, +0.21~+0.39% for Paraffin Wax and -2.71~-1.76% for Putty impression. Error ranges of reproducibility of positions were measured ${\pm}3mm$ for Mouth Piece, ${\pm}2mm$ for Paraffin Wax and ${\pm}2mm$ mm for Putty impression. Difference of prescription MU from dose absorption with an filling material increased +7.8% (250 MU) in Putty impression and -0.9% (230 MU) in Paraffin Wax as converted into a percentage from the standard phantom, Water 232 MU. Conclusion: Dose reduction of boundary between cavity and tissue was observed for Mouth Piece. Mouth Piece also had low reproducibility of positions as it had no reflection of anatomy of oral cavity even though it was a proper material to separate Maxilla and Mandible during therapy. On the other hand, Putty impression was a suitable material to correctly re-position oral cavity as before. However, it risked normal tissues getting unnecessary over irradiation and it caused radiation dose decrease by -2.5% for 1cm volume in comparison of it of water phantom. Dose reduction in Paraffin Wax, Fat Tissue-Equivalent Material, was smaller than other impressions and position reproducibility of it was remarkable as it was possible to make an anatomy reflected impression. It was also well fitted to oral cavity to transfer radiation dose planned in radiotherapy. Thus, Paraffin Wax will be an ideal material in radiotherapy for patients with oral cancer.

  • PDF

Evaluation of Usefulness on In-vivo Diode Dosimetry for Measuring the Tumor Dose of Oral Cancer Patient (구강암 환자의 종양 선량 측정을 위한 In-vivo Diode Dosimetry의 유용성 평가)

  • Na Kyung-Su;Lee Je-Hee;Park Heung-Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.2
    • /
    • pp.133-140
    • /
    • 2005
  • Purpose : This test is designed to identify the validity of treatment plan by implementing real-time dosimetry by means of dose that is absorbed into PTV and OAR when preparing doses of 3D and POP plans. Materials and Methods : In treatment. error can be calculated be comparing Exp. Dose with the actual dose, which has been converted from 'the reading value obtained by placing diode detector on the area to be measured'. Same test can be repeated using Alderson-Rando phantom. Results : Errors were found: A patient(POP plan): 197.6/199=-1.2%, B patient(3D-plan): 199.9/198.7=+0.6%, C patient: 196/200=-1.5%. In addition, considering the resulted value of measuring OAR besides target-dose for C patient showed 96/200, representing does of 47%, the purpose of protection was judged to be duly accomplished. Also it was acknowledged the resulted value of -3.7% met the targeted dose within the range of ${\pm}5%$. Conclusion : Aimed for identifying the usefulness of pre-treatment dose measurement using diode detector, this test was useful to evaluate the validity of curing because it resulted in the identification of category to be protected as well as t dose. Moreover, it is thought to have great advantage in ascertaining the dose of target, dose of which is not calculated yet. Similar to L-gram before treatment, this test is thought to be very effective so that it can bring great advantages in the aspects such as validity of curing method and post-treatment plan as well.

  • PDF

Spatial Variability of Soil Moisture Content, Soil Penetration Resistance and Crop Yield on the Leveled Upland in the Reclaimed Highland (고령지 개간지 밭의 토양수분과 경도 및 작물수량의 공간변이성)

  • Park, Chol-Soo;Yang, Su-Chan;Lee, Gye-jun;Lee, Jeong-Tae;Kim, Hak-Min;Park, Sang-Hoo;Kim, Dae-Hoon;Jung, Ah-Yeong;Hwang, Seon-Woong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.3
    • /
    • pp.123-135
    • /
    • 2006
  • Spatial variability and distribution map of soil properties and the relationships between soil properties and crop yields are not well characterized in agroecosystems that have been land leveled to facilitate more cultivation of the new reclaimed sloping highland. Potato, onion, carrot, Chinese cabbage and radish were grown on the coarse sandy loam soil in 2004. Soil moisture content, soil penetration resistance and crop yield were sampled in the $10m{\times}50m$ field consisted of five plots. Sampling sites of each cultivation plot were 33 for the soil moisture, 11 for the soil penetration and 33 for the crop yield. The results of semivariance analysis, most of models were shown spherical equation. The significant ranges of each spatial variability model for the soil moisture, soil penetration and crop yield were broad as 33-35 meters in the potato cultivation plot, and that in the Chinese cabbage cultivation plot was narrow as 5-6 meters. The coefficient of variances (C.V.) of moisture, penetration and yield were various from 14 to 59 percents in five cultivation plots. The highest C.V. of potato yield was 59 percents, and that of the radish cultivation plot was as low as 14 percents. The required sample numbers for the determination of soil moisture content, soil penetration resistance and crop yield with error 10% at 0.05 significant level were ranged 8-40 for soil moisture, 7-25 for soil penetration and 424-4,678 for crop yield. The variogram and distribution map by kriging described field characteristics well so that the spatial variability would be useful for soil management for better efficiency and precision agriculture in the reclaimed highland.

Improvement of the Dose Calculation Accuracy Using MVCBCT Image Processing (Megavoltage Cone-Beam CT 영상의 변환을 이용한 선량 계산의 정확성 향상)

  • Kim, Min-Joo;Cho, Woong;Kang, Young-Nam;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.62-69
    • /
    • 2012
  • The dose re-calculation process using Megavoltage cone-beam CT images is inevitable process to perform the Adaptive Radiation Therapy (ART). The purpose of this study is to improve dose re-calculation accuracy using MVCBCT images by applying intensity calibration method and three dimensional rigid body transform and filtering process. The three dimensional rigid body transform and Gaussian smoothing filtering process to MVCBCT Rando phantom images was applied to reduce image orientation error and the noise of the MVCBCT images. Then, to obtain the predefined modification level for intensity calibration, the cheese phantom images from kilo-voltage CT (kV CT), MVCBCT was acquired. From these cheese phantom images, the calibration table for MVCBCT images was defined from the relationship between Hounsfield Units (HUs) of kV CT and MVCBCT images at the same electron density plugs. The intensity of MVCBCT images from Rando phantom was calibrated using the predefined modification level as discussed above to have the intensity of the kV CT images to make the two images have the same intensity range as if they were obtained from the same modality. Finally, the dose calculation using kV CT, MVCBCT with/without intensity calibration was applied using radiation treatment planning system. As a result, the percentage difference of dose distributions between dose calculation based on kVCT and MVCBCT with intensity calibration was reduced comparing to the percentage difference of dose distribution between dose calculation based on kVCT and MVCBCT without intensity calibration. For head and neck, lung images, the percentage difference between kV CT and non-calibrated MVCBCT images was 1.08%, 2.44%, respectively. In summary, our method has quantitatively improved the accuracy of dose calculation and could be a useful solution to enhance the dose calculation accuracy using MVCBCT images.

A Study on Prediction of Asian Dusts Using the WRF-Chem Model in 2010 in the Korean Peninsula (WRF-Chem 모델을 이용한 2010년 한반도의 황사 예측에 관한 연구)

  • Jung, Ok Jin;Moon, Yun Seob
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.90-108
    • /
    • 2015
  • The WRF-Chem model was applied to simulate the Asian dust event affecting the Korean Peninsula from 11 to 13 November 2010. GOCART dust emission schemes, RADM2 chemical mechanism, and MADE/SORGAM aerosol scheme were adopted within the WRF-Chem model to predict dust aerosol concentrations. The results in the model simulations were identified by comparing with the weather maps, satellite images, monitoring data of $PM_{10}$ concentration, and LIDAR images. The model results showed a good agreement with the long-range transport from the dust source area such as Northeastern China and Mongolia to the Korean Peninsula. Comparison of the time series of $PM_{10}$ concentration measured at Backnungdo showed that the correlation coefficient was 0.736, and the root mean square error was $192.73{\mu}g/m^3$. The spatial distribution of $PM_{10}$ concentration using the WRF-Chem model was similar to that of the $PM_{2.5}$ which were about a half of $PM_{10}$. Also, they were much alike in those of the UM-ADAM model simulated by the Korean Meteorological Administration. Meanwhile, the spatial distributions of $PM_{10}$ concentrations during the Asian dust events had relevance to those of both the wind speed of u component ($ms^{-1}$) and the PBL height (m). We performed a regressive analysis between $PM_{10}$ concentrations and two meteorological variables (u component and PBL) in the strong dust event in autumn (CASE 1, on 11 to 23 March 2010) and the weak dust event in spring (CASE 2, on 19 to 20 March 2011), respectively.

Analysis of Growth Response by Non - destructive, Continuous Measurement of Fresh Weight in Leaf Lettuce 1. Effect of Nutrient Solution and Light Condition on the Growth of Leaf Lettuce (비파괴 연속 생체중 측정장치의 개발 및 이에 의한 상추의 생장반응 분석 l. 양액의 이온 농도 및 명ㆍ암 처리가 생장에 미치는 영향)

  • 남윤일;채제천
    • Journal of Bio-Environment Control
    • /
    • v.4 no.1
    • /
    • pp.50-58
    • /
    • 1995
  • These studies were carried out to develop a system for non -destructive and continuous measurement of fresh weight and to analyse the growth response of leaf lettuce under the different nutrient solution and light condition with this system. The developed measurement system was consisted of four load cells and a microcomputer. The output from the system was highly positive correlation with the plant fresh weight above the surface of the hydroponic solution. The top fresh weight of plant could be measured within the error $\pm$ 1.0g in the range of 0 - 2000g. The top fresh weight of leaf lettuce increased 44 times at 18th day after transferring to the nutrient solution, and the maximum growth rate was observed at 13th day after transferring. The growth rate was 10.7- 29.6% per day during 18 days. Optimum concentration of the nutrient solution for the growth of lettuce was 1.4 - 2.2 mS/cm of EC level. When the light condition was changed from dark to light, the fresh weight was temporarily decreased, but the fresh weight increased under the opposite condition. Top fresh weight of leaf lettuce in the darkness normally increased within 12 hours after darkness treatment, and then slowly increased until 78 hours under continuous dark condition. After that times, the fresh weight began to decrease.

  • PDF