• Title/Summary/Keyword: error in test

Search Result 3,734, Processing Time 0.04 seconds

A Development of 3-D Numeric Model for the Confined Flow and Discharge under Sea Ground (해저 지중 피압유체의 흐름과 양수량 산출에 관한 3차원 수치모형의 개발)

  • Kim, Sang-Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.6
    • /
    • pp.387-396
    • /
    • 2010
  • A 3-D numeric model for the confined transient flow under sea ground have been developed. This is FDM model using Gauss-Seidel SOR (successive over-relaxation). This model shows the similar head distribution pattern to Theis analytic solution and MODFLOW simulation. The input flowrate to the aquifer and discharge of well have been compared. And it have been found that mass balance is influenced by the weight factor ${\alpha}$, i.e. fullyimplicit method (${\alpha}$=1) shows 5% error, but when ${\alpha}$ becomes to 0.5(Crank and Nicolson method) the mass balance becomes worse and the model result diverges. And the convergency of the model is not much different when $\lambda$ (over-relaxation factor)=0.8~1.5, but when $\lambda$>1.5, the model result diverges. The test-run shows that the well discharge becomes smaller when another well is near. This model can cover the isotropy$(Kx{\neq}Ky{\neq}Kz)$ and inhomogeneity, and can be used for the selection of well site, discharge calculation, and head prediction in case of the artificial recharge etc.

Location Estimation System based on Majority Sampling Data (머저리티 샘플링 데이터 기반 위치 추정시스템)

  • Park, Geon-Yeong;Jeon, Min-Ho;Oh, Chang-Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2523-2529
    • /
    • 2014
  • Location estimation service can be provided outdoors using various location estimation system based on GPS. However, location estimation system is based on existing indoor resources as GPS cannot be used because of insufficient visible satellites and weak signals. The fingerprinting technique that uses WLAN signal, in particular, is good to use indoors because it uses RSSI provided by AP to estimate location. However, its accuracy may vary depending on how accurate data the offline stage used where the fingerprinting map is built. The study sampled various data at the stage that builds the fingerprinting map and suggested a location estimation system that enhances its precision by saving the data of high frequency among them to improve this problem. The suggested location estimation system based on majority sampling data estimates location by filtering RSSI data of the highest frequency at the client and server to be saved at a map, building the map and measuring a similar distance. As a result of the test, the location estimation precision stood at minimum 87.5 % and maximum 90.4% with the margin of error at minimum 0.25 to 2.72m.

Predicting Sensitivity of Motion Sickness using by Pattern of Cardinal Gaze Position (기본 주시눈 위치의 패턴을 이용한 영상멀미의 민감도 예측)

  • Park, Sangin;Lee, Dong Won;Mun, Sungchul;Whang, Mincheol
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.227-235
    • /
    • 2018
  • The aim of this study is to predict the sensitivity of motion sickness (MS) using pattern of cardinal gaze position (CGP) before experiencing the virtual reality (VR) content. Twenty volunteers of both genders (8 females, mean age $28.42{\pm}3.17$) participated in this experiment. They was required to measure the pattern of CGP for 5 minute, and then watched VR content for 15 minute. After watching VR content, subjective experience for MS reported from participants using by 'Simulator Sickness Questionnaire (SSQ)'. Statistical significance between CGP and SSQ score were confirmed using Pearson correlation analysis and independent t-test, and prediction model was extracted from multiple regression model. PCPA & PCPR indicators from CGP revealed significantly difference and strong or moderate positive correlation with SSQ score. Extracted prediction model was tested using correlation coefficient and mean error, SSQ score between subjective rating and prediction model showed strong positive correlation and low difference.

Development of 3-D Nonlinear Wave Driver Using SPH (SPH을 활용한 3차원 비선형 파랑모형 개발)

  • Cho, Yong Jun;Kim, Gweon Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.559-573
    • /
    • 2008
  • In this study, we newly proposed 3-D nonlinear wave driver utilizing the Navier-Stokes Eq. the numerical integration of which is carried out using SPH (Smoothed Particle Hydrodynamics), an internal wave generation with the source function of Gaussian distribution and an energy absorbing layer. For the verification of new 3-D nonlinear wave driver, we numerically simulate the sloshing problem within a parabolic water basin triggered by a Gaussian hump and uniformly inclined water surface by Thacker (1981). It turns out that the qualitative behavior of sloshing caused by relaxing the external force which makes a free surface convex or uniformly inclined is successfully simulated even though phase error is visible and an inundation height shrinks as numerical simulation more proceeds. For the more severe test, we also simulate the nonlinear shoaling and refraction over uniform beach of wedge shape. It is shown that numerically simulated waves are less refracted than the linear counterpart by Hamiltonian ray theory due to nonlinearity, energy dissipation at the bottom and side walls, energy loss induced by breaking, and the hydraulic jump occurring when breaking waves encounter a down-rush by the preceding wave.

Automated Satellite Image Co-Registration using Pre-Qualified Area Matching and Studentized Outlier Detection (사전검수영역기반정합법과 't-분포 과대오차검출법'을 이용한 위성영상의 '자동 영상좌표 상호등록')

  • Kim, Jong Hong;Heo, Joon;Sohn, Hong Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.687-693
    • /
    • 2006
  • Image co-registration is the process of overlaying two images of the same scene, one of which represents a reference image, while the other is geometrically transformed to the one. In order to improve efficiency and effectiveness of the co-registration approach, the author proposed a pre-qualified area matching algorithm which is composed of feature extraction with canny operator and area matching algorithm with cross correlation coefficient. For refining matching points, outlier detection using studentized residual was used and iteratively removes outliers at the level of three standard deviation. Throughout the pre-qualification and the refining processes, the computation time was significantly improved and the registration accuracy is enhanced. A prototype of the proposed algorithm was implemented and the performance test of 3 Landsat images of Korea. showed: (1) average RMSE error of the approach was 0.435 pixel; (2) the average number of matching points was over 25,573; (3) the average processing time was 4.2 min per image with a regular workstation equipped with a 3 GHz Intel Pentium 4 CPU and 1 Gbytes Ram. The proposed approach achieved robustness, full automation, and time efficiency.

Manufacture and Qualification of Composite Main Reflector of High Stable Deployable Antenna for Satellite (위성용 전개형 고안정 반사판 안테나 주반사판 제작 및 검증)

  • Dong-Geon Kim;Hyun-Guk Kim;Dong-Yeon Kim;Kyung-Rae Koo;Ji-min An;O-young Choi
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.219-225
    • /
    • 2024
  • It is essential to develop a light-weight, high-performance structure for the deployable reflector antenna, which is the payload of a reconnaissance satellite, considering launch and orbital operation performance. Among them, the composite main reflector is a key component that constitutes a deployable reflector antenna. In particular, the development of a high-performance main reflector is required to acquire high-quality satellite images after agile attitude control maneuvers during satellite missions. To develop main reflector, the initial design of the main reflector was confirmed considering the structural performance according to the laminate stacking design and material properties of the composite main reflector that constitutes the deployable reflector antenna. Based on the initial design, four types of composite main reflectors were manufactured with the variable for manufacturing process. As variables for manufacturing process, the curing process of the composite structure, the application of adhesive film between the carbon fiber composite sheet and the honeycomb core, and the venting path inside the sandwich composite were selected. After manufacture main reflector, weight measurement, non-destructive testing(NDT), surface error measurement, and modal test were performed on the four types of main reflectors produced. By selecting a manufacturing process that does not apply adhesive film and includes venting path, for a composite main reflector with light weight and structural performance, we developed and verified a main reflector that can be applied to the SAR(Synthetic Aperture Rader) satellite.

K-DEV: A Borehole Deviation Logging Probe Applicable to Steel-cased Holes (철재 케이싱이 설치된 시추공에서도 적용가능한 공곡검층기 K-DEV)

  • Yoonho, Song;Yeonguk, Jo;Seungdo, Kim;Tae Jong, Lee;Myungsun, Kim;In-Hwa, Park;Heuisoon, Lee
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.167-176
    • /
    • 2022
  • We designed a borehole deviation survey tool applicable for steel-cased holes, K-DEV, and developed a prototype for a depth of 500 m aiming to development of own equipment required to secure deep subsurface characterization technologies. K-DEV is equipped with sensors that provide digital output with verified high performance; moreover, it is also compatible with logging winch systems used in Korea. The K-DEV prototype has a nonmagnetic stainless steel housing with an outer diameter of 48.3 mm, which has been tested in the laboratory for water resistance up to 20 MPa and for durability by running into a 1-km deep borehole. We confirmed the operational stability and data repeatability of the prototype by constantly logging up and down to the depth of 600 m. A high-precision micro-electro-mechanical system (MEMS) gyroscope was used for the K-DEV prototype as the gyro sensor, which is crucial for azimuth determination in cased holes. Additionally, we devised an accurate trajectory survey algorithm by employing Unscented Kalman filtering and data fusion for optimization. The borehole test with K-DEV and a commercial logging tool produced sufficiently similar results. Furthermore, the issue of error accumulation due to drift over time of the MEMS gyro was successfully overcome by compensating with stationary measurements for the same attitude at the wellhead before and after logging, as demonstrated by the nearly identical result to the open hole. We believe that the methodology of K-DEV development and operational stability, as well as the data reliability of the prototype, were confirmed through these test applications.

A Study of Equipment Accuracy and Test Precision in Dual Energy X-ray Absorptiometry (골밀도검사의 올바른 질 관리에 따른 임상적용과 해석 -이중 에너지 방사선 흡수법을 중심으로-)

  • Dong, Kyung-Rae;Kim, Ho-Sung;Jung, Woon-Kwan
    • Journal of radiological science and technology
    • /
    • v.31 no.1
    • /
    • pp.17-23
    • /
    • 2008
  • Purpose : Because there is a difference depending on the environment as for an inspection equipment the important part of bone density scan and the precision/accuracy of a tester, the management of quality must be made systematically. The equipment failure caused by overload effect due to the aged equipment and the increase of a patient was made frequently. Thus, the replacement of equipment and additional purchases of new bonedensity equipment caused a compatibility problem in tracking patients. This study wants to know whether the clinical changes of patient's bonedensity can be accurately and precisely reflected when used it compatiblly like the existing equipment after equipment replacement and expansion. Materials and methods : Two equipments of GE Lunar Prodigy Advance(P1 and P2) and the Phantom HOLOGIC Spine Road(HSP) were used to measure equipment precision. Each device scans 20 times so that precision data was acquired from the phantom(Group 1). The precision of a tester was measured by shooting twice the same patient, every 15 members from each of the target equipment in 120 women(average age 48.78, 20-60 years old)(Group 2). In addition, the measurement of the precision of a tester and the cross-calibration data were made by scanning 20 times in each of the equipment using HSP, based on the data obtained from the management of quality using phantom(ASP) every morning (Group 3). The same patient was shot only once in one equipment alternately to make the measurement of the precision of a tester and the cross-calibration data in 120 women(average age 48.78, 20-60 years old)(Group 4). Results : It is steady equipment according to daily Q.C Data with $0.996\;g/cm^2$, change value(%CV) 0.08. The mean${\pm}$SD and a %CV price are ALP in Group 1(P1 : $1.064{\pm}0.002\;g/cm^2$, $%CV=0.190\;g/cm^2$, P2 : $1.061{\pm}0.003\;g/cm^2$, %CV=0.192). The mean${\pm}$SD and a %CV price are P1 : $1.187{\pm}0.002\;g/cm^2$, $%CV=0.164\;g/cm^2$, P2 : $1.198{\pm}0.002\;g/cm^2$, %CV=0.163 in Group 2. The average error${\pm}$2SD and %CV are P1 - (spine: $0.001{\pm}0.03\;g/cm^2$, %CV=0.94, Femur: $0.001{\pm}0.019\;g/cm^2$, %CV=0.96), P2 - (spine: $0.002{\pm}0.018\;g/cm^2$, %CV=0.55, Femur: $0.001{\pm}0.013\;g/cm^2$, %CV=0.48) in Group 3. The average error${\pm}2SD$, %CV, and r value was spine : $0.006{\pm}0.024\;g/cm^2$, %CV=0.86, r=0.995, Femur: $0{\pm}0.014\;g/cm^2$, %CV=0.54, r=0.998 in Group 4. Conclusion: Both LUNAR ASP CV% and HOLOGIC Spine Phantom are included in the normal range of error of ${\pm}2%$ defined in ISCD. BMD measurement keeps a relatively constant value, so showing excellent repeatability. The Phantom has homogeneous characteristics, but it has limitations to reflect the clinical part including variations in patient's body weight or body fat. As a result, it is believed that quality control using Phantom will be useful to check mis-calibration of the equipment used. A value measured a patient two times with one equipment, and that of double-crossed two equipment are all included within 2SD Value in the Bland - Altman Graph compared results of Group 3 with Group 4. The r value of 0.99 or higher in Linear regression analysis(Regression Analysis) indicated high precision and correlation. Therefore, it revealed that two compatible equipment did not affect in tracking the patients. Regular testing equipment and capabilities of a tester, then appropriate calibration will have to be achieved in order to calculate confidential BMD.

  • PDF

Changes of lateral cephalometric values according to the rotation of head (두부회전에 따른 측모두부방사선 계측치의 변화)

  • Kim, Kwang-Soo;Hwang, Mee-Sun;Choi, Eui-Hwan;Kim, Kwang-Won;Yoon, Young-Jooh
    • The korean journal of orthodontics
    • /
    • v.30 no.1 s.78
    • /
    • pp.53-66
    • /
    • 2000
  • This study was performed to find out the effect of projection errors on cephalometric linear and angular measurements according to head rotation during taking lateral cephalometric radiographs. Seventeen skulls with permanent dentition and no gross asymmetry were obtained from the Department of Anatomy, Medical School, Chosun University. Total 527 x-ray films were taken with $1^{\circ}$ interval from the reference position($0^{\circ}$) to ${\pm}15^{\circ}$ around the vertical axis (Z axis) which is perpendicular to the midpoint of the line connecting the center of two ear rods in submento-vertex direction. Statistical analysis was performed by paired t-test if there were statistically significant differences between the mean of the reference position($0^{\circ}$) and that of each rotation angle. The following results were obtained. 1. The projection errors of angular measurements were smaller than those of linear measurements. 2. The projection errors of angular measurements including midline landmarks were smaller than those including bilateral landmarks. 3. The horizontal linear measurements were gradually decreased when the stroll was rotated toward the film, but slightly increased and then decreased when the skull was rotated toward the focal spot. However, the changes were smaller in focal direction. 4. The projection errors of horizontal linear measurements were larger than those of vertical linear measurements. 5. The projection errors of vertical linear measurements were increased with increased distance from the rotation axis to vertical measurements. It is concluded that the use of angular measurements rather than linear measurements is recommended to minimize the projection errors.

  • PDF

The Efficacy and Effect of Reverse Geometry Contact Lens on Cornea (역기하학 렌즈의 유효성과 각막에 미치는영향)

  • Kim, Kwang-Bae;Kim, Young-Hoon;Bark, Sang-Bai;Sun, Kyung-Ho;Jeong, Youn-Hong
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.2
    • /
    • pp.1-12
    • /
    • 2007
  • Object of this research is to estimate the effect of myopia correction and safety on reverse geometry contact lens fitting in school children. This research include 53(106eyes) schoolchildren among 7 to 18 years who has low to moderate myopia(-1.00D~-5.00D) and prescribed reverse geometry contact lens for purpose on orthokeratology between January to July 2004 and had 3months full follow up examination. They were tested for slit lamp examinations, BUT(Break up time), direct ophthalmoscopy, retinoscopy, uncorrected visual acuity, best corrected visual acuity, autorefraction, autokeratometry and corneal topography in each examination(1day, 1week, 2weeks, 1, 2, and 3months) of before-and-after lens wearing to find out the effect of myopic correction and side effect. The results came out as follow. The average of uncorrected visual acuity was $0.0938{\pm}0.378$ before lens wear and $0.3136{\pm}0.283$ after 1day lens wear, and there was fast improvement after 1week($0.7925{\pm}0.301$) and little improvement after 2weeks period but still they shows better uncorrected visual acuity(p<0.01). The result of this study, the reverse geometry lens is very useful to correct refractive error and control the progression of myopia temporally among low to moderate myopic patient. The side effects were relatively rare but further study should be necessary with long term lens wear effect on eye health. For the lens prescription, the clinical fitting process had higher rate of success with consideration of eccentricity and corneal topography.

  • PDF