• Title/Summary/Keyword: error estimate

Search Result 2,291, Processing Time 0.033 seconds

Mapping Poverty Distribution of Urban Area using VIIRS Nighttime Light Satellite Imageries in D.I Yogyakarta, Indonesia

  • KHAIRUNNISAH;Arie Wahyu WIJAYANTO;Setia, PRAMANA
    • Asian Journal of Business Environment
    • /
    • v.13 no.2
    • /
    • pp.9-20
    • /
    • 2023
  • Purpose: This study aims to map the spatial distribution of poverty using nighttime light satellite images as a proxy indicator of economic activities and infrastructure distribution in D.I Yogyakarta, Indonesia. Research design, data, and methodology: This study uses official poverty statistics (National Socio-economic Survey (SUSENAS) and Poverty Database 2015) to compare satellite imagery's ability to identify poor urban areas in D.I Yogyakarta. National Socioeconomic Survey (SUSENAS), as poverty statistics at the macro level, uses expenditure to determine the poor in a region. Poverty Database 2015 (BDT 2015), as poverty statistics at the micro-level, uses asset ownership to determine the poor population in an area. Pearson correlation is used to identify the correlation among variables and construct a Support Vector Regression (SVR) model to estimate the poverty level at a granular level of 1 km x 1 km. Results: It is found that macro poverty level and moderate annual nighttime light intensity have a Pearson correlation of 74 percent. It is more significant than micro poverty, with the Pearson correlation being 49 percent in 2015. The SVR prediction model can achieve the root mean squared error (RMSE) of up to 8.48 percent on SUSENAS 2020 poverty data.Conclusion: Nighttime light satellite imagery data has potential benefits as alternative data to support regional poverty mapping, especially in urban areas. Using satellite imagery data is better at predicting regional poverty based on expenditure than asset ownership at the micro-level. Light intensity at night can better describe the use of electricity consumption for economic activities at night, which is captured in spending on electricity financing compared to asset ownership.

Estimation of Power Using PV System Model Formula and Machine Learning (태양광시스템 모델식과 기계학습을 이용한 발전성능 추정)

  • Hyun Gyu Oh;Woo Gyun Shin;Young Chul Ju;Soo Hyun Bae;Hye Mi Hwang;Gi Hwan Kang;Suk Whan Ko;Hyo Sik Chang
    • Current Photovoltaic Research
    • /
    • v.11 no.1
    • /
    • pp.27-33
    • /
    • 2023
  • In this paper, a machine learning model by using a regression algorithm is proposed to estimate the power generation performance of the BIPV system. The physical model formula for estimating the generation performance and the proposed model were compared and analyzed. For the physical model formula, simple efficiency model, temperature correction model, and regressive physics model for changing an irradiance were used. As a result, when comparing the regressive physics model for changing an irradiance and the proposed model with the actual generation measured data, the respective RMSE values are 0.1497 kW, 0.0451 kW and the accuracy values are 86.44%, and 96.56%. Therefore, the proposed model implemented in this experiment can be useful in estimating power generation.

Application of Recurrent Neural-Network based Kalman Filter for Uncertain Target Models (불확정 표적 모델에 대한 순환 신경망 기반 칼만 필터 설계)

  • DongBeom Kim;Daekyo Jeong;Jaehyuk Lim;Sawon Min;Jun Moon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.10-21
    • /
    • 2023
  • For various target tracking applications, it is well known that the Kalman filter is the optimal estimator(in the minimum mean-square sense) to predict and estimate the state(position and/or velocity) of linear dynamical systems driven by Gaussian stochastic noise. In the case of nonlinear systems, Extended Kalman filter(EKF) and/or Unscented Kalman filter(UKF) are widely used, which can be viewed as approximations of the(linear) Kalman filter in the sense of the conditional expectation. However, to implement EKF and UKF, the exact dynamical model information and the statistical information of noise are still required. In this paper, we propose the recurrent neural-network based Kalman filter, where its Kalman gain is obtained via the proposed GRU-LSTM based neural-network framework that does not need the precise model information as well as the noise covariance information. By the proposed neural-network based Kalman filter, the state estimation performance is enhanced in terms of the tracking error, which is verified through various linear and nonlinear tracking problems with incomplete model and statistical covariance information.

Determination and evaluation of dynamic properties for structures using UAV-based video and computer vision system

  • Rithy Prak;Ji Ho Park;Sanggi Jeong;Arum Jang;Min Jae Park;Thomas H.-K. Kang;Young K. Ju
    • Computers and Concrete
    • /
    • v.31 no.5
    • /
    • pp.457-468
    • /
    • 2023
  • Buildings, bridges, and dams are examples of civil infrastructure that play an important role in public life. These structures are prone to structural variations over time as a result of external forces that might disrupt the operation of the structures, cause structural integrity issues, and raise safety concerns for the occupants. Therefore, monitoring the state of a structure, also known as structural health monitoring (SHM), is essential. Owing to the emergence of the fourth industrial revolution, next-generation sensors, such as wireless sensors, UAVs, and video cameras, have recently been utilized to improve the quality and efficiency of building forensics. This study presents a method that uses a target-based system to estimate the dynamic displacement and its corresponding dynamic properties of structures using UAV-based video. A laboratory experiment was performed to verify the tracking technique using a shaking table to excite an SDOF specimen and comparing the results between a laser distance sensor, accelerometer, and fixed camera. Then a field test was conducted to validate the proposed framework. One target marker is placed on the specimen, and another marker is attached to the ground, which serves as a stationary reference to account for the undesired UAV movement. The results from the UAV and stationary camera displayed a root mean square (RMS) error of 2.02% for the displacement, and after post-processing the displacement data using an OMA method, the identified natural frequency and damping ratio showed significant accuracy and similarities. The findings illustrate the capabilities and reliabilities of the methodology using UAV to evaluate the dynamic properties of structures.

A Study on Evaluation of the Potential of Omni-Channel Market in China by Region (중국의 지역별 옴니채널시장 잠재력 평가에 관한 연구)

  • Jung, Seok-Mo;Lee, Choong-Bae
    • Korea Trade Review
    • /
    • v.43 no.1
    • /
    • pp.131-152
    • /
    • 2018
  • This study evaluates the potential by Chines region for entry of Korean logistics companies and retailers. The variables affecting e-commerce business and retail sales concerning the Chinese omni-channel market were extracted from a thorough literature review. Empirical analyses for variables based on 31 regions in China were performed. Results show that e-commerce is affected by disposable income and internet traffic and that retail sales are affected by urban and rural population, GRDP and urbanization. In addition, we performed variance decomposition analysis in order to estimate responses of logistics GDP(transport, storage and communication) and the number of Chinese mobile users. Exogenous shocks to logistics GDP and the number of mobile phone users play a strong role in explaining the forecast error of express service variance over time. Based on our results, we suggest 7 potential regions(Guangdong, Jiangsu, Zhejiang, Beijing, Shanghai, Liaoning and Shandong) as well as managerial implications for entry into China for logistics companies and retailers.

  • PDF

Model Development for Specific Degradation Using Data Mining and Geospatial Analysis of Erosion and Sedimentation Features

  • Kang, Woochul;Kang, Joongu;Jang, Eunkyung;Julien, Piere Y.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.85-85
    • /
    • 2020
  • South Korea experiences few large scale erosion and sedimentation problems, however, there are numerous local sedimentation problems. A reliable and consistent approach to modelling and management for sediment processes are desirable in the country. In this study, field measurements of sediment concentration from 34 alluvial river basins in South Korea were used with the Modified Einstein Procedure (MEP) to determine the total sediment load at the sampling locations. And then the Flow Duration-Sediment Rating Curve (FD-SRC) method was used to estimate the specific degradation for all gauging stations. The specific degradation of most rivers were found to be typically 50-300 tons/㎢·yr. A model tree data mining technique was applied to develop a model for the specific degradation based on various watershed characteristics of each watershed from GIS analysis. The meaningful parameters are: 1) elevation at the middle relative area of the hypsometric curve [m], 2) percentage of wetland and water [%], 3) percentage of urbanized area [%], and 4) Main stream length [km]. The Root Mean Square Error (RMSE) of existing models is in excess of 1,250 tons/㎢·yr and the RMSE of the proposed model with 6 additional validations decreased to 65 tons/㎢·yr. Erosion loss maps from the Revised Universal Soil Loss Equation (RUSLE), satellite images, and aerial photographs were used to delineate the geospatial features affecting erosion and sedimentation. The results of the geospatial analysis clearly shows that the high risk erosion area (hill slopes and construction sites at urbanized area) and sedimentation features (wetlands and agricultural reservoirs). The result of physiographical analysis also indicates that the watershed morphometric characteristic well explain the sediment transport. Sustainable management with the data mining methodologies and geospatial analysis could be helpful to solve various erosion and sedimentation problems under different conditions.

  • PDF

Machine-assisted Semi-Simulation Model (MSSM): Predicting Galactic Baryonic Properties from Their Dark Matter Using A Machine Trained on Hydrodynamic Simulations

  • Jo, Yongseok;Kim, Ji-hoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.55.3-55.3
    • /
    • 2019
  • We present a pipeline to estimate baryonic properties of a galaxy inside a dark matter (DM) halo in DM-only simulations using a machine trained on high-resolution hydrodynamic simulations. As an example, we use the IllustrisTNG hydrodynamic simulation of a (75 h-1 Mpc)3 volume to train our machine to predict e.g., stellar mass and star formation rate in a galaxy-sized halo based purely on its DM content. An extremely randomized tree (ERT) algorithm is used together with multiple novel improvements we introduce here such as a refined error function in machine training and two-stage learning. Aided by these improvements, our model demonstrates a significantly increased accuracy in predicting baryonic properties compared to prior attempts --- in other words, the machine better mimics IllustrisTNG's galaxy-halo correlation. By applying our machine to the MultiDark-Planck DM-only simulation of a large (1 h-1 Gpc)3 volume, we then validate the pipeline that rapidly generates a galaxy catalogue from a DM halo catalogue using the correlations the machine found in IllustrisTNG. We also compare our galaxy catalogue with the ones produced by popular semi-analytic models (SAMs). Our so-called machine-assisted semi-simulation model (MSSM) is shown to be largely compatible with SAMs, and may become a promising method to transplant the baryon physics of galaxy-scale hydrodynamic calculations onto a larger-volume DM-only run. We discuss the benefits that machine-based approaches like this entail, as well as suggestions to raise the scientific potential of such approaches.

  • PDF

Has Container Shipping Industry been Fixing Prices in Collusion?: A Korean Market Case

  • Jaewoong Yoon;Yunseok Hur
    • Journal of Korea Trade
    • /
    • v.27 no.1
    • /
    • pp.79-100
    • /
    • 2023
  • Purpose - The purpose of this study is to analyze the market power of the Korea Container Shipping Market (Intra Asia, Korea-Europe, and Korea-U.S.) to verify the existence of collusion empirically, and to answer whether the joint actions of liner market participants in Korea have formed market dominance for each route. Precisely, it will be verified through the Lerner index as to whether the regional market of Asia is a monopoly, oligopoly, or perfect competition. Design/methodology - This study used a Lerner index adjusted with elasticity presented in the New Imperial Organization (NEIO) studies. NEIO refers to a series of empirical studies that estimate parameters to judge market power from industrial data. This study uses B-L empirical models by Bresnahan (1982) and Lau (1982). In addition, NEIO research data statistically contain self-regression and stability problems as price and time series data. A dynamic model following Steen and Salvanes' Error Correction Model was used to solve this problem. Findings - The empirical results are as follows. First, λ, representing market power, is nearly zero in all three markets. Second, the Korean shipping market shows low demand elasticity on average. Nevertheless, the markup is low, a characteristic that is difficult to see in other industries. Third, the Korean shipping market generally remains close to perfect competition from 2014 to 2022, but extreme market power appears in a specific period, such as COVID-19. Fourth, there was no market power in the Intra Asia market from 2008 to 2014. Originality/value - Doubts about perfect competition in the liner market continued, but there were few empirical cases. This paper confirmed that the Korea liner market is a perfect competition market. This paper is the first to implement dynamics using ECM and recursive regression to demonstrate market power in the Korean liner market by dividing the shipping market into Deep Sea and Intra Asia separately. It is also the first to prove the most controversial problems in the current shipping industry numerically and academically.

Estimating Tensile Force of Hangers in Suspension Bridges Using Frequency Based SI Technique : III. Experimental Verification (진동기반의 SI 기법을 이용한 현수교 행어의 장력 추정 : III. 실험적 검증)

  • Jang, Han Teak;Kim, Byeong Hwa;Park, Taehyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.215-222
    • /
    • 2008
  • This paper introduces an experimental verification of a tension estimation method based on system identification approach for a double hanger system on a suspension bridge. A laboratory model of such double hanger system has been made for this study. Total nine cases of the vibration tests have been conducted with respect to three levels of applied tension and three cases of the location of clamp. For a set of the collected acceleration response data, modal analysis has been followed in order to extract the natural frequencies and mode shapes of the selected cable systems. For the extracted modal parameters, the existing tension estimation methods based on the string theory and axially loaded beam theory have been firstly applied to estimate the tensile force on the double hanger cable system. Next, the tensile force on cables has been estimated by the system identification approach. It is seen that the errors in the tension estimation using the frequency-based system identification technique are about 3% for all cases while the estimation error using the existing method is up to 53.1%.

Prediction of Various Properties of Soft Ground Soils using Artificial Neural Network (인공신경망을 이용한 연약지반의 지반설계정수 예측)

  • Kim, Young Su;Jeong, Woo Seob;Jeonge, Hwan Chul;Im, An Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2C
    • /
    • pp.81-88
    • /
    • 2006
  • This study performed field and laboratory tests for poor subsoils taken in six regions of the country and determined undrain shear strength. Su values and preconsolidation pressure are predicted using Back Propagation neural network (BPNN) and the application of BPNN is verified. The result of BPNN shows that correlation coefficient between test and neural network result is over 0.9, which means high correlativity. Especially the neural network uses only 6 parameters such as natural water content, void ratio, specific gravity, rate of passing 200th sieve, liquid limits and plasticity index among various affecting factors to estimate value and the correlation coefficent is 0.93. The conclusions obtained in this paper are from the tests performed for poor subsoils taken in the several regions of the country. If there were more test results, the prediction and influence of various soil properties could be effectively performed by neural network.