• Title/Summary/Keyword: error concealment

Search Result 156, Processing Time 0.023 seconds

Hybrid Error Concealment Algorithm for MPEG-4 Video Decoding

  • Song, Hak-Sop;Okada, Hiroyuki;Fujita, Gen;Onoye, Takao;Shirakawa, Isao
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.611-614
    • /
    • 2002
  • In this paper, a novel error concealment, algorithm is proposed for the MPEG-4 video decoding. Apart from existing algorithms which fail to exhibit stable performance over various video sequences and error patterns, the proposed algorithm adopts a new hybrid scheme, which can achieve a consistent performance with reduced computational complexity. This algorithm is implemented on the basis of the MPEG-4 decoder, and the experimental results demonstrate that the new approach provides acceptable performance both subjectively and objectively at various bit error rates and video sequences.

  • PDF

Study of Error Reconstruction Algorithm for Real-time Voice for Transmissions over the Internet (인터넷상의 실시간 음성 전송을 위한 에러 복원 알고리즘의 연구)

  • 신현숙;최연성
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.388-394
    • /
    • 2001
  • In this paper, a large number of algorithm have been proposed for error concealment and reconstruction real-time voice transmission for over the internet. The main purpose of this algorithm perform error reconstruction using low bandwidth and then guarantee good voice quality. Error concealment algorithm can be classified into receiver-based and sender- and receiver-based. In this paper, we apply the sender - and receiver-based reconstruction algorithm to low bit rate codec using CELP.

  • PDF

Channel Error Detwction and Concealment Technqiues for the MPEG-2 Video Standard (MPEG-2 동영상 표준방식에 대한 채널 오차의 검출 및 은폐 기법)

  • 김종원;박종욱;이상욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.10
    • /
    • pp.2563-2578
    • /
    • 1996
  • In this paper, channel error characteristics are investigated to alleviate the channel error propagation problem of the digital TV transmission systems. First, error propagation problems, which are mainly caused by the inter-frame dependancy and variable length coding of the MPEG-2 baseline encoder, are intensively analyzed. Next, existing channel resilient schemes are systematically classified into two kinds of schemes; one for the encoder and the other for the decoder. By comparing the performance and implementation cost, the encoder side schemes, such as error localization, layered coding, error resilience bit stream generation techniques, are described in this paper. Also, in an effort to consider the parcticality of the real transmission situation, an efficient error detection scheme for a decoder system is proposed by employing a priori information of the bit stream syntas, checking the encoding conditions at the encoder stage, and exploiting the statistics of the image itself. Finally, subsequent error concealment technique based on the DCT coefficient recovery algorithm is adopted to evaluate the performance of the proposed error resilience technique. The computer simulation results show that the quality of the received image is significantly improved when the bit error rate is as high as 10$^{-5}$ .

  • PDF

Hybrid Error Concealment Algorithm for Intra-Frame in H.264 (H.264의 인트라 프레임을 위한 하이브리드 에러 은닉 알고리즘)

  • Yim Chang-Hoon;Kim Won-Jung;Lim Hye-Sook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8C
    • /
    • pp.777-785
    • /
    • 2006
  • H.264 is the prominent video coding standard in various applications such as real-time video streaming and digital multimedia broadcasting, since it provides enhanced compression performance, error resilience tools, and network adaptation. Since compressed video stream is vulnerable to packet loss, error resilience and error concealment(EC) tools are essential for the transmission of video over the Internet. In this paper, we first propose a simple temporal EC method that improves the EC performance for intra-frame in H.264 when the amount of motion is relatively small. Then we propose a new hybrid EC method for intra-frame in H.264, which combines the spatial EC and temporal EC adaptively. The simulations are performed in packet-lossy environments, and the proposed hybrid EC method shows about 0.5-4dB PSNR improvement compared to the conventional spatial EC method that is used for intra-frame in H.264.

Novel Motion Estimation Technique Based Error-Resilient Video Coding (새로운 움직임 예측기법 기반의 에러 내성이 있는 영상 부호화)

  • Hwang, Min-Cheol;Kim, Jun-Hyung;Ko, Sung-Jea
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.108-115
    • /
    • 2009
  • In this paper, we propose a novel true-motion estimation technique supporting efficient frame error concealment for error-resilient video coding. In general, it is important to accurately obtain the true-motion of objects in video sequences for effectively recovering the corrupted frame due to transmission errors. However, the conventional motion estimation (ME) technique, which minimizes a sum of absolute different (SAD) between pixels of the current block and the motion-compensated block, does not always reflect the true-movement of objects. To solve this problem, we introduce a new metric called an absolute difference of motion vectors (ADMV) which is the distance between motion vectors of the current block and its motion-compensated block. The proposed ME method can prevent unreliable motion vectors by minimizing the weighted combination of SAD and ADMV. In addition, the proposed ME method can significantly improve the performance of error concealment at the decoder since error concealment using the ADMV can effectively recover the missing motion vector without any information of the lost frame. Experimental results show that the proposed method provides similar coding efficiency to the conventional ME method and outperforms the existing error-resilient method.

H.264의 FMO Performance Evaluation and Comparison over Packet-Lossy Networks (패킷 손실이 발생하는 네트워크 환경에서의 H.264의 FMO 성능분석과 비교에 관한 연구)

  • Kim Won-Jung;Lim Hye-Sook;Yim Chang-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5C
    • /
    • pp.490-496
    • /
    • 2006
  • H.264 is the most recent video coding standard, containing improved error resilience tools than previous video compression schemes. This paper shows an analysis of the dependency of error concealment (EC) performance on the expected number of correctly received neighboring macroblock(MB)s for a lost MB, applying error concealment schemes to the raster scan mode that is used in the previous video coding standard and the flexible macroblock ordering (FMO) which is one of error-resilience tools in H.264. We also present simulation results and performance evaluation with various packet loss rates. Simulation results show that the FMO mode provides better EC performances of $1{\sim}9dB$ PSNR improvements compared to the raster scan mode because of larger expected number of correctly received neighboring MBs. The PSNR improvement by FMO mode becomes higher as the intra-frame period is larger and the packet loss rate is higher.

A Temporal Error Concealment Algorithm with Adaptive Block Size in the H.264/AVC Standard (H.264에서의 시방향(時方向) 에러은닉 기법)

  • Kim, Dong-Hyung;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2C
    • /
    • pp.49-58
    • /
    • 2005
  • For the improvement of coding efficiency, the H.264 standard uses new coding tools. Using these coding tools, H.264 has achieved significant improvements from rate-distortion point of view. The adoption of these tools enables a macroblock in H.264 to have more information, sixteen motion vectors, four reference frames and a macroblock mode. In this paper, we present an efficient temporal error concealment algorithm by using not only motion vectors and reference frames but also macroblock mode of neighbor macroblocks. Our algorithm conceals the macroblock error with variable sizes, $16{\times}16,\;16{\times}8,\;8{\times}16,\;8{\times}8$ depending on the macroblock modes of neighbor macroblocks. Simulation results show that the proposed method increase the objective quality regardless of bit-rate and block error rate.

A Boundary Matching and Post-processing Method for the Temporal Error Concealment in H.264/AVC (H.264/AVC의 시간적 오류 은닉을 위한 경계 정합과 후처리 방법)

  • Lee, Jun-Woo;Na, Sang-Il;Won, In-Su;Lim, Dae-Kyu;Jeong, Dong-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.11
    • /
    • pp.1563-1571
    • /
    • 2009
  • In this paper, we propose a new boundary matching method for the temporal error concealment and a post processing algorithm for perceptual quality improvement of the concealed frame. Temporal error concealment is a method that substitutes error blocks with similar blocks from the reference frame. In conventional H.264/AVC standard, it compares outside pixels of erroneous block with inside pixels of reference block to find the most similar block. However, it is very possible that the conventional method substitutes erroneous block with the wrong one because it compares only narrow spatial range of pixels. In this paper, for substituting erroneous blocks with more correct blocks, we propose enhanced boundary matching method by comparing inside and outside pixels of reference block with outside pixels of erroneous block and setting up additional candidate motion vector in the fixed search range based on maximum and minimum value of candidate motion vectors. Furthermore, we propose a post processing method to smooth edges between concealed and decoded blocks without error by using the modified deblocking filter. We identified that the proposed method shows quality improvement of about 0.9dB over the conventional boundary matching methods.

  • PDF

Motion Vector Recovery Based on Optical Flow for Error Concealment (전송 오류를 은닉하기 위한 옵티컬 플로우 기반의 움직임 벡터 복원)

  • Suh, Jae-Won;Ho, Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.6
    • /
    • pp.630-640
    • /
    • 2002
  • The compressed video bitstream is very sensitive to transmission errors. If we lost packet or received with errors during the transmission, not only the current frame will be corrupted, but also errors will propagate to succeeding frames. Error concealment is a data recovery technique that enables the decoder to conceal effects of transmission errors by predicting the lost or corrupted video data from the previously reconstructed error free information. Motion vection recovery and motion compensation with the estimated motion vector is a good approach to conceal the corrupted macroblock data. In this paper, we prove that it is reasonable to use the estimated motion vector to conceal the lost macroblock by providing macroblock distortion models. After we propose a new motion vector recovery algorithm based on optical flow fields, we compare its performance to those of conventional error concealment methods. The proposed algorithm has smaller computational complexity than those of conventional algorithms.

Error Concealment Using Gradient Vectors in H.264 Decoder (H.264 디코더에서 기울기 벡터를 이용한 에러복원 방법)

  • Jeon Sung-Hoon;Yoo Jae-Myeong;Lee Guee-Sang
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.197-204
    • /
    • 2006
  • Recent advances in information technology have resulted in rapid growth in the mobile communication. With this explosive growth, reliable transmission and error concealment technique become increasingly important to offer high quality multimedia services. In this paper, we propose an improved BMA(Boundary Matching Algorithm) method using gradient vectors to conceal channel errors in inter-frames of H.264 video images. General BMA method computes the sum of pixel differences of adjacent pixels of the candidate block and its neighbouring blocks, assuming that adjacent pixels have almost the same value. In real images, however, there exist some gradients, which means that the pixel values are increasing or decreasing in a specific direction. In this paper, we develop a precise estimation method of errors in candidates blocks using gradient information and try to recover lost blocks with this technique. Experimental results show the improvement of picture quality about $1{\sim}3dB$ compared to existing methods.