• Title/Summary/Keyword: error concealment

Search Result 156, Processing Time 0.024 seconds

Spatial Error Concealment Technique for Losslessly Compressed Images Using Data Hiding in Error-Prone Channels

  • Kim, Kyung-Su;Lee, Hae-Yeoun;Lee, Heung-Kyu
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.168-173
    • /
    • 2010
  • Error concealment techniques are significant due to the growing interest in imagery transmission over error-prone channels. This paper presents a spatial error concealment technique for losslessly compressed images using least significant bit (LSB)-based data hiding to reconstruct a close approximation after the loss of image blocks during image transmission. Before transmission, block description information (BDI) is generated by applying quantization following discrete wavelet transform. This is then embedded into the LSB plane of the original image itself at the encoder. At the decoder, this BDI is used to conceal blocks that may have been dropped during the transmission. Although the original image is modified slightly by the message embedding process, no perceptible artifacts are introduced and the visual quality is sufficient for analysis and diagnosis. In comparisons with previous methods at various loss rates, the proposed technique is shown to be promising due to its good performance in the case of a loss of isolated and continuous blocks.

Whole Frame Error Concealment with an Adaptive PU-based Motion Vector Extrapolation and Boundary Matching (적응적인 PU 기반 움직임 벡터 외삽과 경계 정합을 통한 프레임 전체 오류 은닉 방법에 관한 연구)

  • Kim, Seounghwi;Lee, Dongkyu;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.20 no.4
    • /
    • pp.533-544
    • /
    • 2015
  • Recently, most of the video services are usually transmitted in wireless networks. In networks environment, a packet of video is likely to be lost during transmission. For this reason, this paper proposes a new Error Concealment (EC) algorithm. For High Efficiency Video Coding (HEVC) bitstreams, the proposed algorithm includes Adaptive Prediction Unit-based Motion Vector Extrapolation (APMVE) and Boundary Matching (BM) algorithm, which employs both the temporal and spatial correlation. APMVE adaptively decides a Error Concealment Basic Unit (ECBU) by using the PU information of the previous frame and BM employing the spatial correlation is applied to only unreliable blocks. Simulation results show that the proposed algorithm provides the higher subjective quality by reducing blocking artifacts which appear in other existing algorithms.

Hierarchical Search-based Fast Schemes for Consecutive Block Error Concealment (연속된 블록 오류 은닉을 위한 계층 탐색 기반의 고속 알고리즘)

  • Jeon Soo-Yeol;Sohn Chae-Bong;Oh Seoung-Jun;Ahn Chang-Beom
    • Journal of Broadcast Engineering
    • /
    • v.9 no.4 s.25
    • /
    • pp.446-454
    • /
    • 2004
  • With the growth of multimedia systems, compressing image data has become more important in the area of multimedia services. Since a compressed image bitstream can often be seriously distorted by various types of channel noise, an error concealment algorithm becomes a very important issue. In order to solve this problem, Hsia proposed the error concealment algorithm where he recovered lost block data using 1D boundary matching vectors. His algorithm, however, requires high computational complexity since each matching vector needs MAD (Mean Absolute Difference) values of all pixels, which is either a boundary line top or a boundary line bottom of a damaged block. We propose a hierarchical search-based fast error concealment scheme as well as its approximated version to reduce computational time. In the proposed scheme, a hierarchical search is applied to reduce the number of checking points for searching a vector. The error concealment schemes proposed in this paper can be about 3 times faster than Hsia's with keeping visual quality and PSNR.

Subblock Based Temporal Error Concealment of Intra Frame for MPEG-2 (서브 블록을 이용한 MPEG-2 인트라 프레임의 시간적 오류 은닉)

  • Ryu, Chul;Kim, Won-Rak
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.167-169
    • /
    • 2005
  • The occurrence of a single bit error in transmission bitstream leads to serious temporal and spatial errors. Because moving picture coding as MPEG-2 based on block coding algorithm uses variable length coding and motion compensation coding algorithm. In this paper, we propose algorithm to conceal occurred error of I-frames in transmission channel using data of the neighboring blocks in decoder. We divide a damaged macroblock of I-frame into four sub blocks and compose new macroblock using the neighboring blocks for each sub block. We estimate the block with minimum difference value through block matching with previous frame for new macroblocks and replace each estimated block with damaged sub block in the same position. Through simulation results, the proposed algorithm will be applied to a characteristic of moving with effect and shows better performance than conventional error concealment algorithms from visual and PSNR of view.

  • PDF

Temporal Error Concealment Using Boundary Region Feature and Adaptive Block Matching (경계 영역 특성과 적응적 블록 정합을 이용한 시간적 오류 은닉)

  • Bae, Tae-Wuk;Kim, Seung-Jin;Kim, Tae-Su;Lee, Kun-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.12-14
    • /
    • 2005
  • In this paper, we proposed an temporal error concealment (EC) using the proposed boundary matching method and the adaptive block matching method. The proposed boundary matching method improves the spatial correlation of the macroblocks (MBs) by reusing the pixels of the concealed MB to estimate a motion vector of a error MB. The adaptive block matching method inspects the horizontal edge and the vertical edge feature of a error MB surroundings, and it conceals the error MBs in reference to more stronger edge feature. This improves video quality by raising edge connection feature of the error MBs and the neighborhood MBs. In particular, we restore a lost MB as the unit of 8${\times}$16 block or 16${\times}$8 block by using edge feature from the surrounding macroblocks. Experimental results show that the proposed algorithm gives better results than the conventional algorithms from a subjective and an objective viewpoint.

  • PDF

An Efficient Spatial Error Concealment Technique Using Adaptive Edge-Oriented Interpolation (적응적 방향성 보간을 이용한 효율적인 공간적 에러 은닉 기법)

  • Park, Sun-Kyu;Kim, Won-Ki;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5C
    • /
    • pp.487-495
    • /
    • 2007
  • When error occurs during the network transmission of the image, the quality of the restored image is very serious. Therefore to maintain the received image quality, the error concealment technique is necessary. This paper presents an efficient spatial error concealment method using adaptive edge-oriented interpolation. It deals with errors on slice level. The proposed method uses boundary matching method having 2-step processes. We divide error block into external and internal region, adaptively restore each region. Because this method use overall as well as local edge characteristics, it preserves edge continuity and texture feature. The proposed technique reduces the complexity and provide better reconstruction quality for damaged images than the previous methods.

An Image Concealment Algorithm Using Fuzzy Inference (퍼지 추론을 이용한 영상은닉 알고리즘)

  • Kim, Ha-Sik;Kim, Yoon-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.4
    • /
    • pp.485-492
    • /
    • 2007
  • In this paper, we propose the receiver block error detection of the video codec and the image concealment algorithm using fuzzy inference. The proposed error detection and concealment algorithm gets SSD(Summation of Squared Difference) and BMC(Boundary Matching Coefficient) using the temporal and spatial similarity between corresponded blocks in the two successive frames. Proportional constant, ${\alpha}$, for threshold value, TH1 and TH2, is decided after fuzzy data is generated by each parameter. To examine the propriety of the proposed algorithm, random errors are inserted into the QCIF Susie standard image, then the error detection and concealment performance is simulated. To evaluate the efficiency of the algorithm, image quality is evaluated by PSNR for the error detection and concealed image by the existing VLC table and by the proposed method. In the experimental results, the error detection algorithm could detect all of the inserted error, the image quality is improved over 15dB after the error concealment compare to existing error detection algorithm.

  • PDF

Kalman filter based Motion Vector Recovery for H.264 (H.264 비디오 표준에서의 칼만 필터 기반의 움직임벡터 복원)

  • Ko, Ki-Hong;Kim, Seong-Whan
    • The KIPS Transactions:PartD
    • /
    • v.14D no.7
    • /
    • pp.801-808
    • /
    • 2007
  • Video coding standards such as MPEG-2, MPEG-4, H.263, and H.264 transmit a compressed video data using wired/wireless communication line with limited bandwidth. Because highly compressed bit-streams is likely to fragile to error from channel noise, video is damaged by error. There have been many research works on error concealment techniques, which recover transmission errors at decoder side [1, 2]. We designed an error concealment technique for lost motion vectors of H.264 video coding. In this paper, we propose a Kalman filter based motion vector recovery scheme, and experimented with standard video sequences. The experimental results show that our scheme restores original motion vector with more precision of 0.91 - 1.12 on average over conventional H.264 decoding with no error recovery.

An error concealment technique using directional interpolation in block-based image compression (블록 기반 영상압축에 있어서 방향성 보간을 이용한 에러 은닉 기법)

  • 김승종;정제창;최병욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.5
    • /
    • pp.915-927
    • /
    • 1997
  • In this paper, we propose an error concealment technique using directional interpolation in block-based image compression. In the proposed method the edge direction is determined by finding the maximum correlation coefficients of boundary pixels of blocks neighboring the errored block in spatial domain. Then the errored block is interpolated linearly or bilinearly along the determined edge direction. The proposed method can conceal the block error, the macro block error, and the slice error adaptively. Also, the parameters for the directional interpolation are represented by closed forms. When applied to compressed images, the proposed method shows superior subjective and objective quality to conventional error concealment methods.

  • PDF

An Efficient Error Concealment Algorithm using Adaptive Selection of Adjacent Motion Vectors (주변 움직임 벡터의 적응적 선택을 이용한 효율적인 에러은닉 알고리즘)

  • Lee Hyun-Woo;Seong Dong-Su
    • The KIPS Transactions:PartB
    • /
    • v.11B no.6
    • /
    • pp.661-666
    • /
    • 2004
  • In the wireless communication systems, transmission errors degrade the reconstructed image quality severely. Error concealment in video communication is becoming increasingly important because transmission errors can cause single or multiple loss of macroblocks in video delivery over unreliable channels such as wireless networks and internet. Among various techniques which can reduce the degradation of video quality, the error concealment techniques yield good performance without overheads and the modification of the encoder. In this paper, lost image blocks can be concealed with the OBMC(Overlapped Block Motion Compensation) after new motion vectors of the lost image blocks are allocated by median values using the adaptive selection with motion vectors of adjacent blocks. We know our algorithm is more effective in case of continuous GOB loss. The results show a significant improvement over the zero motion error concealment and other temporal concealment methods such as Motion Vector Rational Interpolation or Median+OBMC by 3dB gain in PSNR.