• 제목/요약/키워드: error compensation

검색결과 1,341건 처리시간 0.032초

CNC 공작기계용 온라인 실시간 위치오차 보정시스템의 개발 (Development of Online Realtime Positioning Error Compensation System for CNC Machine Tools)

  • 정재일;김종원;남원우;이상조
    • 한국정밀공학회지
    • /
    • 제16권10호
    • /
    • pp.45-52
    • /
    • 1999
  • The online realtime positioning error compensation system 'SKY-PACS' is developed to correct geometric errors, thermal errors and tool deflection errors induced by cutting forces on the vertical machining center. 'SKY-PACS' communicates position commands and position compensation signals with the CNC controller at 100Hz, which is CNC control frequency. So the compensation procedure can be applied during axis movement. Using 'SKY-PACS', Maximum 1 axis positioning accuracy was corrected from 5{\mu}m$ to 2{\mu}m$and the squareness error of X-Y table was corrected from 51{\mu}m$/m to below 4{\mu}m$/m. The error compensation under the cutting condition is carried out by ISO10791-7. And the measurement of test-pieces shows that the roundness is corrected rom 8{\mu}m$ to below 5{\mu}m$.

  • PDF

초정밀 스테이지의 반복정밀도 분석 및 보정 (Analysis and compensation of Repeatability for Ultra-precision Stage)

  • 박종하;황주호;박천홍;홍준희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.800-803
    • /
    • 2004
  • The refractive index of the laser interferometer is compensated using the simultaneously measured variations of room temperature and humidity in the method. In order to investigate the limit of compensation, the stationary test against two fixed reflectors mounted on the zerodur plate is performed firstly. From the experiment, it is confirmed that the measuring error of the laser interferometer can be improved from 0.12$\mu$m to 0.17$\mu$m by the application of the method. Secondly, for the verification of the compensating effect, it is applied to estimate the positioning accuracy of an ultra precision aerostatic stage. Two times of the refractive index compensation are performed to acquire the positioning error of the stage from the initially measured data, that is, to the initially measured positioning error and to the measured positioning error profile after the NC compensation. Although the positioning error of anaerostatic stage cannot be clarified perfectly, it is known that by the compensation method, the measuring error by the laser interferometer can be improved to within 0.15$\mu$m. English here.

  • PDF

Booth 인코더 출력을 이용한 저오차 고정길이 modified Booth 곱셈기 설계 (Design of Low-error Fixed-width Modified Booth Multiplier Using Booth Encoder Outputs)

  • 조경주;김원관;정진균
    • 한국통신학회논문지
    • /
    • 제29권2C호
    • /
    • pp.298-305
    • /
    • 2004
  • 본 논문은 워드길이가 W 비트인 입력으로부터 W 비트를 출력하는 고정길이 modified Booth 곱셈기에 대한 오차보상 방법을 설명한다. 효율적으로 양자화 오차를 보상하기 위해 Booth 인코더의 출력정보를 이용하여 오차보상 바이어스를 생성한다. 절단된 부분이 양자화 오차에 미치는 영향에 따라 두 그룹(major or minor group)으로 나누고, 각 그룹에 서로 다른 오차보상 방법을 적용한다. 기존 방법과 비교하여 제안한 방법이 오차보상 바이어스를 생성하는 회로의 하드웨어 오버헤드는 비슷하면서 약 50% 정도 양자화 오차가 적음을 시뮬레이션을 통해 보인다. 또한, 면적과 전력소모 면에서 제안한 고정길이 곱셈기가 이상적인 곱셈기 보다 약 40% 정도 적게 나타났다.

신경 회로망을 이용한 로봇의 상대 오차 보상 (Relative Error Compensation of Robot Using Neural Network)

  • 김연훈;정재원;김수현;곽윤근
    • 한국정밀공학회지
    • /
    • 제16권7호
    • /
    • pp.66-72
    • /
    • 1999
  • Robot calibration is very important to improve the accuracy of robot manipulators. However, the calibration procedure is very time consuming and laborious work for users. In this paper, we propose a method of relative error compensation to make the calibration procedure easier. The method is completed by a Pi-Sigma network architecture which has sufficient capability to approximate the relative relationship between the accuracy compensations and robot configurations while maintaining an efficient network learning ability. By experiment of 4-DOF SCARA robot, KIRO-3, it is shown that both the error of joint angles and the positioning error of end effector are drop to 15$\%$. These results are similar to those of other calibration methods, but the number of measurement is remarkably decreased by the suggested compensation method.

  • PDF

고속카메라를 이용한 절삭공구변형의 보상에 관한 연구 (Compensation for Machining Error included by Tool Deflection Using High-Speed Camera)

  • 배종석;김건희;윤길상;서태일
    • 소성∙가공
    • /
    • 제16권1호
    • /
    • pp.15-19
    • /
    • 2007
  • This paper presents an integrated machining error compensation method based on captured images of tool deflection shapes in flat end-milling processes. This approach allows us to avoid modeling machining characteristics (cutting forces, tool deflections and machining errors etc.) and accumulating calculation errors induced by several simulations. For this, a high-speed camera captured images of real deformed tool shapes which were cutting under given machining conditions. Using image processes and a machining error model, it is possible to estimate tool deflection in cutting conditions modeled and to compensate for machining errors using an iterative algorithm correcting tool paths. This corrected tool path can effectively reduce machining errors in the flat end-milling process. Experiments are carried out to validate the approaches proposed in this paper. The proposed error compensation method can be effectively implemented in a real machining situation, producing much smaller errors.

5축CNC공작기계의 회전테이블 오차 측정에 관한 연구 (A study on the measurement of rotary table error with 5-axis CNC machine)

  • 서석환;정세용;이응석
    • 한국정밀공학회지
    • /
    • 제14권11호
    • /
    • pp.84-92
    • /
    • 1997
  • The purpose of this study is to develop a geometric error model and path compensation algorithm for rotating axes of the 5-axis machine tools, by a method to calibrate a rotary table using one master ball and three LVDTs. It was developed a new methodology to measure 3 translation errors of the rotary table and with a compensation procedure for setup errors of the master ball. The method is experimentally verified using a ball-table and on-machine inspection method. The results showed that the geometric error models with the path compensation strategy can be practically used as a means for improving the accuracy of the machine tools with rotary table.

  • PDF

사출성형품의 역공학예서 Geometry정보를 이용한 정밀도 향상에 관한 연구 (A Study on Improvement of Accuracy using Geometry Information in Reverse Engineering of Injection Molding Parts)

  • 김연술;이희관;황금종;공영식;양균의
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.546-550
    • /
    • 2002
  • This paper proposes an error compensation method that improves accuracy with geometry information of injection molding parts. Geometric information can give an improved accuracy in reverse engineering. Measuring data can not lead to get accurate geometric model, including errors of physical parts and measuring machines. Measuring data include errors which can be classified into two types. One is molding error in product, the other is measuring error. Measuring error includes optical error of laser scanner, deformation by probe forces of CMM and machine error. It is important to compensate these in reverse engineering. Least square method(LSM) provides the cloud data with a geometry compensation, improving accuracy of geometry. Also, the functional shape of a part and design concept can be reconstructed by error compensation using geometry information.

  • PDF

레이저 간섭계의 진직도 측정오차 보상 (Straightness Measurement Error Compensation of the Laser Interferometer)

  • 김경호;김태호;송창규;이후상;김승우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.114-118
    • /
    • 2001
  • HP Laser Interferometer Measurement System[HP5529A] is one of the most powerful equipment for measurement of the motion accuracy. The straightness measurement system of the HP5529A is composed of wollastone prism and reflector. In this system, straightness error is measured by relative lateral motion between prism and reflector. But rotating motion of prism or reflector as moving optic causes not real straightness error but additive straightness error. Especially unwanted straightness error as this becomes very large when reflector is used as moving optic and an interval between reflector and prism is distant. In this paper, the compensation method is proposed for removing additive error and experiment is carried out for theoretical verification.

  • PDF