• Title/Summary/Keyword: equivalent-circuit

Search Result 1,776, Processing Time 0.037 seconds

Corrosion Monitoring of Reinforcing Bars in Cement Mortar Exposed to Seawater Immersion-and-dry Cycles (해수침지-건조 환경에 노출된 모르타르속 철근의 부식속도 평가)

  • Kim, Je-kyoung;Kee, Seong-Hoon;Yee, Jurng-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.10-18
    • /
    • 2018
  • The primary purposes of this study are to understand a fundamental aspect of current uniformity around a reinforcing bar (rebar) in cement mortar, and to develop an accurate monitoring method in a wet-dry cycling process with the alternative current (AC) impedance method. Three cement mortar specimens with two embedded rebars were prepared in the laboratory. As a main variable, the distance between two rebars was designed to be 10, 20 and 30 mm with the same thickness of 20 mm. To simulate the corrosion of rebars in concrete structures in a marine environment, three cement mortar specimens were exposed to 15 wet-drying cycles (24-hour-immersion in seawater and 48-hour-drying in a room temperature) in the laboratory. It was observed that the potential level shifted to a noble value during corrosion potential monitoring, which is attributed to acceleration of dissolved oxygen diffusion at the drying process. AC impedance was measured in a frequency range from 100 kHz to 1 mHz on a wet-drying process. A theoretical model was proposed to explain the interface condition between the rebars and cement mortar by using the equivalent circuit consisting of a solution resistance, a charge transfer resistance and a CPE (constant phase element). It was observed that the diffusion impedance appeared in a low frequency range as corrosion of rebars progresses. At the drying stage of the wet-drying cycles, the currents line for monitoring tended to be non-uniform at the interface of rebar/mortar, being phase shift, ${\theta}$, close to $-45^{\circ}$.

Miniaturized Multilayer Band Pass Chip filter for IMT-2000 (IMT-2000용 초소헝 적층형 대역 통과 칩 필터 설계 및 제작)

  • Lim Hyuk;Ha, Jong-Yoon;Sim, Sung-Hun;Kang, Chong-Yun;Choi, Ji-Won;Choi, Se-Young;Oh, Young-Jei;Kim, Hyun-Jai;Yoon, Seok-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.10
    • /
    • pp.961-966
    • /
    • 2003
  • A Multi-Layer Ceramic (MLC) chip type Band-Pass Filter (BPF) using BiNb$\_$0.975/Sb$\_$0.025/ $O_4$ LTCC (Low Temperature Co-fired Ceramics) and MLC processing is presented. The MLC chip BPF has the benefits of low cost and small size. The BPF consists of coupled stripline resonators and coupling capacitors. The BPF is designed to have an attenuation pole at below the passband for a receiver band of IMT-2000 handset. The computer-aided design technology is applied for analysis of the BPF frequency characteristics. The attenuation pole depends on the coupling between resonators and the coupling capacitance. An equivalent circuit and structure of MLC chip BPF are proposed. The frequency characteristics of the manufactured BPF is well acceptable for IMT-2000 application.

A Semiconductor Etching Process Monitoring System Development using OES Sensor (OES 센서를 이용한 반도체 식각 공정 모니터링 시스템 개발)

  • Kim, Sang-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.3
    • /
    • pp.107-118
    • /
    • 2013
  • In this paper, we developed the semiconductor monitoring system for the etching process. Around the world, expert companies are competing fiercely since the semiconductor industry is a leading value-added industry that produces the essential components of electronic products. As a result, many researches have been conducted in order to improve the quality, productivity, and characteristics of semiconductor products. Process monitoring techniques has an important role to give an equivalent quality and productivity to produce semiconductor. In fact, since the etching process to form a semiconductor circuit causes great damage to the semiconductors, it is very necessary to develop a system for monitoring the process. The proposed monitoring system is mainly focused on the dry etching process using plasma and it provides the detailed observation, analysis and feedback to managers. It has the functionality of setting scenarios to match the process control automatically. In addition, it maximizes the efficiency of process automation. The result can be immediately reflected to the system since it performs real-time monitoring. UI (User Interface) provides managers with diagnosis of the current state in the process. The monitoring system has diverse functionalities to control the process according to the scenario written in advance, to stop the process efficiently and finally to increase production efficiency.

Spectral Induced Polarization Response Charaterization of Pb-Zn Ore Bodies at the Gagok mine (가곡광산 연-아연 광체의 광대역유도분극 반응 특성)

  • Shin, Seungwook;Park, Samgyu;Shin, Dongbok
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.4
    • /
    • pp.247-252
    • /
    • 2014
  • Gagok Mine, which is skarn deposits, includes sulfide minerals such as sphalerite, galena, chalcopyrite, and pyrrhotite. To explore these minerals, spectral induced polarization (SIP) is relatively effective compared to other geophysical exploration methods because there is a strong IP effect caused by electrode polarization. In the SIP, the chargeability related to sulfide mineral contents and the time constant related to the grain size of the minerals are obtained. For this reason, we aim to compare difference in the mineralized characteristics between two orebodies in the Gagok Mine by using the chargeability and the time constant. For this study, we sampled ores from the south of Wolgok orebody and the north of Sungok orebody. In order to recognize the mineralization characteristics, the metal content of the samples was measured by a potable XRF and the SIP data of the samples were acquired by using a laboratory SIP measurement system. As a result, the metals in the samples such as Pb, Zn, Cu, and Fe were detected by the portable XRF measurement. In particular, the Fe and Zn contents were far higher than the other metals. The Fe and the Zn were caused by the sphalerite and the pyrrhotite through microscopy. The Wolgok orebody had higher sulfide mineral contents than the Sungok orebody and the result corresponded with the chargeability result. However, we considered that the Sungok orebody had a larger sulfide mineral grain size than the Wolgok orebody because the time constant of the Sungok orebody was larger.

Fabrication and pH response characteristics of LAPS(Light addressable potentiometric sensor) with electrolyte/$Si_3N_4/SiO_2$/Si structure (Electrolyte/$Si_3N_4/SiO_2/Si$ 구조의 LAPS 제작 및 pH 응답특성)

  • Chang Su-Won;Koh Kwang-Nak;Kang Shin-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.40-44
    • /
    • 1998
  • The LAPS device of fast response and high sensitivity, based on electrochemical potential difference, and its system were fabricated for the precise measurement of pH changes and its characteristic were investigated. The electrostatic variation characteristics of LAPS according to the pH changes and parameters in the device were verified through a simulation using LAPS equivalent circuit model. The LAPS device and its system were fabricated on the basis of the result of simulation. The fabricated LAPS system showed linear sensitivity (about 56 mV/pH within the range of pH 2 to pH 11. In order to overcome the defect of general urea sensor (especially slow response time), urease immobilized nitrocellulose membrane was attached on the LAPS and resulted in the very fast response time, 0.29 mV/sec, 0.86 mV/sec at urea concentration of $50{\mu}g/ml,\; 500{\mu}g/ml$, respectively. And also in order to measure the uranyl ion, the uranyl ion selective sensing membrane with calix[6]arene derivative was used and its sensitivity was 25mV/concentration decade in the wide uranyl ion concentration range of $10^{-11}M\;to\;10^{-4}M$.

Design of A Microwave Planar Broadband Power Divider (마이크로파대 평면형 광대역 전력 분배기 설계)

  • Park, Jun-Seok;Kim, hyeong-Seok;Ahn, Dal;Kang, Kwang-yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.4
    • /
    • pp.651-658
    • /
    • 2001
  • A novel multi-section power divider configuration is proposed to obtain wide-band frequency performance up to microwave frequency region. Design procedures for the proposed microwave broadband power divider are composed of a planar multi-section three-ports hybrid and a waveguide transformer design procedures. The multi-section power divider is based on design theory of the optimum quarter-wave transformer. Furthermore, in order to obtain the broadband isolation performance between the two adjacent output ports, the odd mode equivalent circuit should be matched by using the lossy element such as resistor. The derived design formula for calculating these odd mode matching elements is based on the singly terminated filter design theory. The waveguide transformer section is designed to suppress the propagation of the higher order modes such as waveguide modes due to employing the metallic electric wall. Thus, each section of the designed waveguide transformer should be operated with evanescent mode over the whole design frequency band of the proposed microwave broadband power divider. This paper presents several simulations and experimental results of multi-section power divider to show validity of the proposed microwave broadband power divider configuration. Simulation and experiment show excellent performance of multi section power divider.

  • PDF

Miniaturization and Transmission Efficiency Improvement of Resonant Aperture Structure (공진 개구 구조의 소형화 및 투과 효율 개선)

  • Yoo, Jong-Gyeong;Yeo, Junho;Ko, Ji-Whan;Kim, Byung-Mun;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.6
    • /
    • pp.470-477
    • /
    • 2017
  • As a method of the transmission efficiency improvement of an aperture smaller than the wavelength, we modified the conventional H-shaped resonant aperture to lower the resonance frequency of resonant aperture, and the transmission efficiency of resonant aperture was improved more than the conventional aperture. The maximum transmission cross section(TCS) calculated using the equivalent circuit tends to be almost equal to the maximum TCS from the small resonant aperture modified to improve the transmission efficiency. The transmission characteristics of resonant apertures can be quantified as the TCS, and the transmission efficiency of that can be compared. The modified resonant aperture has a maximum TCS increased by about 2.87 times from $846mm^2$ to $2,431mm^2$ compared to the H-shaped aperture, and the resonant frequency decreased from 5.06 GHz to 2.92 GHz, and the length-to-wavelength ratio of the aperture was reduced from 0.178 to 0.103.

Analysis of Bioimpedance Change and the Characteristics of Blood Pressure according to Posture (자세에 따른 생체임피던스 변화와 혈압 특성 분석)

  • Cho, Young Chang;Kim, Min Soo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.5
    • /
    • pp.25-31
    • /
    • 2014
  • Bioelectrical Impedance Analysis(BIA) is a widely used method for estimating body composition changes which is a non-invasive, inexpensive, safety and reproductive method. We studied the bioimpedance change and the distinction of blood pressure according to body posture and conducted three kinds of experiments: the real-time bioimpedance measurement, the simulation using equivalent circuit model and the blood pressure measurement. Bioimpedance is measured during 4 minutes at the multi-frequency(1 kHz, 10 kHz, 20 kHz, 50 kHz, 70 kHz, 100 kHz). From the experiment results, the changes in body postures result in changes of resistance and reactance, with an average rapid increase of body impedance when going from standing, sitting to supine. Specially, the laying resistance on average was 16.49% higher than supine resistance at 50 kHz and the laying reactance measurement was also 26.05% higher than sitting reactance at 1 kHz. Blood pressure in standing posture was higher than those in other postures both in maximum($125.14{\pm}12.30$) and in minimum($75.57{\pm}10.31$). The results of BIA and blood pressure in this study will be contributed to the research on acute illness, extreme fat, and body shape abnormalities.

Step-down Piezoelectric Transformer Using PZT PMNS Ceramics

  • Lim Kee-Joe;Park Seong-Hee;Kwon Oh-Deok;Kang Seong-Hwa
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.3
    • /
    • pp.102-110
    • /
    • 2005
  • Piezoelectric transformers(PT) are expected to be small, thin and highly efficient, and which are attractive as a transformer with high power density for step down voltage. For these reasons, we have attempted to develop a step-down PT for the miniaturized adaptor. We propose a PT, operating in thickness extensional vibration mode for step-down voltage. This PT consists of a multi-layered construction in the thickness direction. In order to develop the step-down PT of 10 W class and turn ratio of 0.1 with high efficiency and miniaturization, the piezoelectric ceramics and PT designs are estimated with a variety of characteristics. The basic composition of piezoelectric ceramics consists of ternary yPb(Zr$_{x}$Ti$_{1-x}$)O$_{3}$-(1-y)Pb(Mn$_{1/3}$Nb1$_{1/3}$Sb$_{1/3}$)O$_{3}$. In the piezoelectric characteristics evaluations, at y=0.95 and x=0.505, the electromechanical coupling factor(K$_{p}$) is 58$\%$, piezoelectric strain constant(d$_{33}$) is 270 pC/N, mechanical quality factor(Qr$_{m}$) is 1520, permittivity($\varepsilon$/ 0) is 1500, and Curie temperature is 350 $^{\circ}C$. At y = 0.90 and x = 0.500, kp is 56$\%$, d33 is 250 pC/N, Q$_{m}$ is 1820, $\varepsilon$$_{33}$$^{T}$/$\varepsilon$$_{0}$ is 1120, and Curie temperature is 290 $^{\circ}C$. It shows the excellent properties at morphotropic phase boundary regions. PZT-PMNS ceramic may be available for high power piezoelectric devices such as PTs. The design of step-down PTs for adaptor proposes a multi-layer structure to overcome some structural defects of conventional PTs. In order to design PTs and analyze their performances, the finite element analysis and equivalent circuit analysis method are applied. The maximum peak of gain G as a first mode for thickness extensional vibration occurs near 0.85 MHz at load resistance of 10 .The peak of second mode at 1.7 MHz is 0.12 and the efficiency is 92$\%$.

Improved Power Performances of the Size-Reduced Amplifiers using Defected Ground Structure (결함 접지 구조를 이용하여 소형화한 증폭기의 개선된 전력 성능)

  • Lim, Jong-Sik;Jeong, Yong-Chae;Han, Jae-Hee;Lee, Young-Taek;Park, Jun-Seok;Ahn, Dal;Nam, Sang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.8
    • /
    • pp.754-763
    • /
    • 2002
  • This paper discusses the improved power performances of the size-reduced amplifier using defected ground structure (DGS). The slow-wave effect and enlarged electrical length occur due to the additional equivalent circuit elements of DGS. Using these properties, it is possible to reduce the length of transmission lines in order to keep the same original electrical lengths by inserting DGS on the ground plane. The matching and performances of the amplifier are preserved even after DGS patterns have been inserted. While there is no loss in the size-reduced transmission lines at the operating frequency, but there exists loss to some extent at harmonic frequencies. This leads to the more excellent inherent capability of harmonic rejection of the size-reduced amplifier. Therefore, it is expected tile harmonics of the size-reduced amplifier are smaller than those of the original amplifier. The measured second harmonic, third order intermodulation distortion (IMD3), and adjacent channel power ratio (ACPR) of the size-reduced amplifier are smaller than those of the original amplifier by 5 dB, 2~6 dB, and 1~4 dB, respectively, as expectation.