• 제목/요약/키워드: equivalent strut

검색결과 43건 처리시간 0.028초

조적채움벽 골조의 내진성능평가를 위한 등가 스트럿 모델의 비교연구 (A Comparison Study of Equivalent Strut Models for Seismic Performance Evaluation of Masonry-Infilled Frame)

  • 유은종;김민재;정대계
    • 한국지진공학회논문집
    • /
    • 제18권2호
    • /
    • pp.79-87
    • /
    • 2014
  • Masonry-infilled walls have been used in reinforced concrete(RC) frame structures as interior and exterior partition walls. Since these walls are considered as nonstructural elements, they were only considered as additional mass. However, infill walls tend to interact with the structure's overall strength, rigidity, and energy dissipation. Infill walls have been analyzed by finite element method or transposed as equivalent strut model. The equivalent strut model is a typical method to evaluate masonry-infilled structure to avoid the burden of complex finite element model. This study compares different strut models to identify their properties and applicability with regard to the characteristics of the structure and various material models.

스트럿-타이 모델에 의한 개구부를 갖는 깊은 보의 극한강도 예측 (Prediction of Ultimate Strength of Concrete Deep Beams with an Opening Using Strut-and-Tie Model)

  • 지호석;송하원;변근주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.189-194
    • /
    • 2001
  • In this study, ultimate strength of concrete deep beams with an opening is predicted by using Strut-and-Tie Model with a new effective compressive strength. First crack occurs around an opening by stress concentration due to geometric discontinuity. This results in decreasing ultimate strength of deep beams with an opening compared with general deep beams. With fundamental notion that ultimate strength of deep beam with an opening decreases as a result of reduction in effective compressive strength of a concrete strut, an equivalent effective compressive strength formula is proposed in order to reflect ultimate strength reduction due to an opening located in a concrete strut. An equivalent effective compressive strength formula which can reflect opening size and position is added to a testified algorithm of predicting ultimate strength of concrete deep beams. Therefore, ultimate strength of concrete deep beam with an opening is predicted by using a simple and rational STM algorithm including an equivalent effective compressive strength formula, not by finite element analysis or a former complex Strut-and-Tie Model

  • PDF

리브로 보강된 철골 모멘트 접합부의 내진설계를 위한 등가 스트럿 모델 (Equivalent Strut Model for Seismic Design of Steel Moment Connections Reinforced with Ribs)

  • 이철호
    • 한국지진공학회논문집
    • /
    • 제5권3호
    • /
    • pp.79-85
    • /
    • 2001
  • 본 논문에서는 리브로 보강된 철골 모멘트 접합부의 내진설계법 정립을 위한 등가 스트럿 모델을 제시하였다. 리브 보강 접합부의 응력전달 메커니즘은 고전 휨이론에 의한 예측과는 전혀 다르며, 리브는 리브의 기울기 방향으로 스트럿 거동을 보임을 유한요소해석에 의해 밝혔다. 리브를 스트럿 요소로 파악하여 리브 접합부의 실용설계에 활용될 수 있는 등가 스트럿 모델링 방안을 제시하였다.

  • PDF

등가 스트럿 모델을 이용한 조적조 채움벽 골조의 내진성능평가 (Seismic Performance Evaluation of Masonry-Infilled Frame Structures using Equivalent Strut Models)

  • 박지훈;전성하;강경수
    • 한국지진공학회논문집
    • /
    • 제16권1호
    • /
    • pp.47-59
    • /
    • 2012
  • 본 연구에서는 학교건물에서 나타나는 전형적인 조적조 채움벽 골조의 내진성능을 등가 스트럿 모델을 통해 평가하였다. 순수골조모델, 중심스트럿모델 및 편심스트럿모델의 세 가지 모형화 방법을 채택하였고, 문헌상으로 얻을 수 있는 범위의 스트럿 강성과 강도를 적용하여 거동특성의 차이를 분석하였다. 역량스펙트럼에 의해 산정된 성능점에서의 변위 및 손상정도에 큰 차이가 나타났으며, 채움벽은 순수골조모델과 비교할 때 중심스트럿모델에서는 유리하게, 편심스트럿모델에서는 불리하게 작용하는 것으로 나타났다. 최종극한변위에서의 거동 또한 모형화 방법 및 재료 속성에 따라서 최대강도, 층간변위, 파괴된 부재 수 및 위치 등에 큰 차이가 나타났다.

스트럿-타이 모델에 의한 프리스트레스트 콘크리트 박스교 격벽부의 상세 설계 (Design of Diaphragm of Prestressed Concrete Box Bridge by Strut-Tie Model)

  • 선민호;김영훈;송하원;변근주
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 추계학술대회 논문집
    • /
    • pp.39-46
    • /
    • 1998
  • This paper is about design for diaphragm of prestressed concrete box bridge using strut-tie model. In this paper, equivalent loads for the diaphragm are computed by considering loading conditions on continuous prestressed concrete box bridge and analyses for both longitudinal section and transverse section of the diaphragm an done by considering the equivalent loading and the prestressing. Based on principal stress trajectory obtained from the analyses, strut-tie model for each sections are constructed. By analyzing the constructed strut-tie model for each sections, the amounts and the locations of reinforcement for the diaphragm are obtained. The application of strut-tie model in this paper shows that the design by soul-tie model for the diaphragm of prestressed concrete box bridges can be rationally performed.

  • PDF

A new method for infill equivalent strut width

  • Tabeshpour, Mohammad Reza;Arasteh, Arash Mahdipour
    • Structural Engineering and Mechanics
    • /
    • 제69권3호
    • /
    • pp.257-268
    • /
    • 2019
  • Infills are as important members in structural design as beams, columns and braces. They have significant effect on structural behavior. Because of lots of variables in infills like material non-linear behavior, the interaction between frames and infill, etc., the infills performance during an earthquake is complicated, so have led designers do not consider the effect of infills in designing the structure. However, the experimental studies revealed that the infills have the remarkable effect on structure behavior. As if these effects ignored, it might occur soft-story phenomena, torsion or short-column effects on the structures. One simple and appropriate method for considering the infills effects in analyzing, is replacing the infills with diagonal compression strut with the same performance of real infill, instead of designing the whole infill. Because of too many uncertainties, codes and researchers gave many expressions that were not as the same as the others. The major intent of this paper is calculation the width of this diagonal strut, which has the most characteristics of infill. This paper by comprehensive on different parameters like the modulus of young or moment of inertia of columns presents a new formula for achieving the equivalent strut width. In fact, this new formula is extracted from about 60 FEM analyses models. It can be said that this formula is very efficient and accurate in estimating the equivalent strut width, considering the large number of effective parameters relative to similar relationships provided by other researchers. In most cases, the results are so close to the values obtained by the FEM. In this formula, the effect of out of plane buckling is neglected and this formula is used just in steel structures. Also, the thickness of infill panel, and the lateral force applied to frame are constant. In addition, this new formula is just for modeling the lateral stiffness. Obtaining the nearest response in analyzing is important to the designers, so this new formula can help them to reach more accurate response among a lot of experimental equations proposed by researchers.

Infilled frames: developments in the evaluation of cyclic behaviour under lateral loads

  • Cavaleri, L.;Fossetti, M.;Papia, M.
    • Structural Engineering and Mechanics
    • /
    • 제21권4호
    • /
    • pp.469-494
    • /
    • 2005
  • In order to consider the modified seismic response of framed structures in the presence of masonry infills, proper models have to be formulated. Because of the complexity of the problem, a careful definition of an equivalent diagonal pin-jointed strut, able to represent the horizontal force-interstorey displacement cyclic law of the actual infill, may be a solution. In this connection the present paper, continuing a previous work in which a generalised criterion for the determination of the ideal cross-section of the equivalent strut was formulated, analizes some models known in literature for the prediction of the lateral cyclic behaviour discussing their field of validity. As a support of the discussion, the results of an experimental investigation involving single story-single bay infilled reinforced concrete. Frames under vertical and lateral loads with different kind of infill (actually not yet so much investigated) are presented. Finally, an improvement of a model known in the literature is proposed, taking the results of the experimental tests before mentioned into account.

Discontinuous deformation analysis for reinforced concrete frames infilled with masonry walls

  • Chiou, Yaw-Jeng;Tzeng, Jyh-Cherng;Hwang, Shuenn-Chang
    • Structural Engineering and Mechanics
    • /
    • 제6권2호
    • /
    • pp.201-215
    • /
    • 1998
  • The structural behavior of reinforced concrete frame infilled with a masonry wall is investigated by the method of discontinuous deformation analysis (DDA). An interface element is developed and it is incorporated into DDA to analyze the continuous and discontinuous behavior of the masonry structure. The numerical results are compared with previous research and possess satisfactory agreement. Then the structural behavior and stress distribution of a reinforced concrete frame infilled with a masonry wall subjected to a horizontal force are studied. In addition, the justification of equivalent strut is assessed by the distribution of principal stresses. The results show that the behavior of the masonry structure is highly influenced by the failure of mortar. On the basis of the distribution of principal stress of the masonry wall in the reinforced concrete frame, the equivalent strut can be approximately substituted for the masonry wall without separation and opening. However, the application of equivalent strut to the masonry wall with separation and opening needs further study.

등가 스트럿 모델에 의한 리브 보강 RBS 철골모멘트접합부의 내진설계 (Seismic Design of Rib-Reinforced RBS (Reduced Beam Section) Steel Moment Connections Based on Equivalent Strut Model)

  • 이철호
    • 한국강구조학회 논문집
    • /
    • 제13권5호
    • /
    • pp.493-502
    • /
    • 2001
  • 본 연구에서는 아직 설계법이 정립되지 않은 리브로 보강된 RBS 철골모멘트 접합부의 내진설계법을 등가 스트럿 모델에 의거하여 제시하였다. 종종 엔지니어가 리브를 사용하여 철골모멘트접합부의 내진성능을 높이고자 할 경우 고전 휨이론에 의거하여 리브와 보로 구성된 일체단면의 단면2차모멘트로서 그루브 용접부의 인장응력도 예측하려 하는데 이는 타당치 않다. 리브접합부의 응력전달 메커니즘은 고전 휨이론에 의한 메카니즘과는 전혀 다르다. 즉 리브는 고전 휨이론에 의한 기대와는 달리 리브의 대각선 기울기 방향으로 스트럿 거동을 보인다. 필자는 이 같은 점에 주목하여 리브를 스트럿 요소로 파악하여 리브 접합부의 설계에 활용될 수 있는 등가 스트럿 모델을 이미 제시한 바가 있다. 본 연구에서는 이 등가 스트럿 모델을 기초로 리브접합부의 실용설계에 활용될 수 있는 단계별 설계절차를 제안하였다.

  • PDF

Infilled frames: developments in the evaluation of the stiffening effect of infills

  • Papia, M.;Cavaleri, L.;Fossetti, M.
    • Structural Engineering and Mechanics
    • /
    • 제16권6호
    • /
    • pp.675-693
    • /
    • 2003
  • In order to consider the modified seismic response of framed structures in the presence of masonry infills, proper models have to be formulated. Because of the complexity of the problem, a careful definition of a diagonal pin-jointed strut, able to represent the horizontal force-interstorey displacement cyclic law of the actual infill, may be a solution. In this connection the present paper shows a generalized criterion for the determination of the ideal cross-section of the strut mentioned before. The procedure is based on the equivalence between the lateral stiffness of the actual infilled frame scheme during the conventional elastic stage of the response and the lateral stiffness of the same frame stiffened by a strut at the same stage. Unlike the usual empirical approaches available in the literature, the proposed technique involves the axial stiffness of the columns of the frame more than their flexural stiffness. Further, the influence of the bidimensional behaviour of the infill is stressed and, consequently, the dependence of the dimensions of the equivalent pin-jointed strut on the Poisson ratio of the material constituting the infill is also shown. The proposed approach is extended to the case of infills with openings, which is very common in practical applications.