• 제목/요약/키워드: equivalent stress block

검색결과 42건 처리시간 0.028초

고강도 콘크리트의 등가응력 매개변수 추정에 관한 연구 (Prediction of Equivalent Stress Block Parameters for High Strength Concrete)

  • 이도형;전정문;정민철;공정식
    • 대한토목학회논문집
    • /
    • 제31권3A호
    • /
    • pp.227-234
    • /
    • 2011
  • 최근 들어 고강도 콘크리트의 사용이 꾸준히 증가하고 있지만 현행 국내 콘크리트구조설계기준은 보통강도 콘크리트에 기초한 등가직사각형 응력매개변수를 사용하고 있어 응력분포가 일반 강도 콘크리트와 상이한 고강도 콘크리트의 설계 시 문제점을 야기할 수 있다. 따라서 이러한 문제점을 극복하기 위해서는 고강도 콘크리트에 대한 새로운 등가응력 매개변수 값이 제시되어져야 할 것으로 판단된다. 본 연구에서는 새로운 등가응력 매개변수를 제안하기 위해 기존 연구자들의 실험데이터를 토대로 선형 및 다중회귀분석을 수행하여 40~80 MPa 까지의 고강도 콘크리트에 대한 등가응력 매개변수를 이론적으로 추정하고 제안된 등가응력모델을 휨과 압축 부재설계에 적용시켜 기존의 국내 콘크리트구조설계기준과 비교검토 하였다. 제안된 등가응력모델로 구조설계를 수행한 결과, 콘크리트 강도 40~70 MPa 까지는 기존 모델에 비해 콘크리트 단면 감소 효과가 있었으며 또한 압축부재의 경우, 제안된 모델이 기존 모델 보다 콘크리트의 압축력을 더 보수적으로 평가하는 것으로 나타났다.

Structural integrity assessment procedure of PCSG unit block using homogenization method

  • Gyogeun Youn;Wanjae Jang;Youngjae Jeon;Kang-Heon Lee;Gyu Mahn Lee;Jae-Seon Lee;Seongmin Chang
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1365-1381
    • /
    • 2023
  • In this paper, a procedure for evaluating the structural integrity of the PCSG (Printed Circuit Steam Generator) unit block is presented with a simplified FE (finite element) analysis technique by applying the homogenization method. The homogenization method converts an inhomogeneous elastic body into a homogeneous elastic body with same mechanical behaviour. This method is effective when the inhomogeneous elastic body has repetitive microstructures, and thus the method was applied to the sheet assembly among the PCSG unit block components. From the method, the homogenized equivalent elastic constants of the sheet assembly were derived. The validity of the determined material properties was verified by comparing the mechanical behaviour with the reference model. Thermo-mechanical analysis was then performed to evaluate the structural integrity of the PCSG unit block, and it was found that the contact region between the steam header and the sheet assembly is a critical point where large bending stress occurs due to the temperature difference.

등가하중법을 이용한 PCTC 박판 블록 용접변형에 관한 연구 (A Study on Welding Deformation of Thin Plate Block of PCTC by Using Equivalent Load Method)

  • 강성구;양종수;김호경;허주호
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2011년도 특별논문집
    • /
    • pp.106-111
    • /
    • 2011
  • The use of thin plate increases due to the need for light weight in large ship. Thin plate is easily distorted and has residual stress by welding heat. Therefore, the thin plates should be carefully joined to minimize the welding deformation. In this study, the welding deformation of PCTC which use a thin plate is investigated by using equivalent load method. The analysis model of 10, 11, 12, upper and garage deck is composed of thin plate of 6mm which is susceptible to welding heat. For two different welding sequences, the welding deformation is calculated and its trend is investigated. The influence of gravity on welding deformation is studied.

  • PDF

GFRP 보강 철근 폴리머 콘크리트 T형 보의 휨 특성 (Flexural Characteristics of Reinforced Polymer Concrete T-Beams Strengthened with GFRP)

  • 김남길;황해근;연정흠
    • 콘크리트학회논문집
    • /
    • 제24권5호
    • /
    • pp.585-596
    • /
    • 2012
  • 이 연구는 교량이나 주차장 건물 등에 적용이 가능한 GFRP 보강 철근 폴리머 콘크리트 T형 보의 휨 특성에 관한 연구로서 GFRP 보강 수준에 따른 압축파괴(compression failure: CF), 인장파괴(tension failure: TF) 및 GFRP 보강재의 파괴(fiber sheet failure: FF) 등 파괴모드의 판단과 결정방법을 제시하고, 파괴모드별 설계휨강도 산정식을 제시하였다. GFRP 보강 철근콘크리트 보에서는 FF, TF, CF 등 3가지 파괴모드 중에서 철근항복 ${\rightarrow}$ GFRP 파단 ${\rightarrow}$ 압축측 콘크리트 파괴의 순으로 진행되는 FF 파괴모드가 가장 이상적이다. FF 파괴모드의 경우 압축측 폴리머 콘크리트가 극한변형률(${\varepsilon}_{cu}$)에 도달하기 전에 GFRP가 먼저 파단되므로 콘크리트의 극한상태를 기반으로 하는 기존의 등가직사각형 응력블럭의 개념을 적용할 수 없다. 따라서 이 연구에서는 폴리머 콘크리트의 특성에 부합되는 이상화된 폴리머 콘크리트의 압축응력-변형률 곡선을 제안하고, 폴리머 콘크리트의 변형률을 기반으로 하여 응력블럭 매개변수 ${\alpha}$, ${\beta}$를 도출하였다. 또한 T형 보의 형상비에 따른의 압축응력 분포 및 설계휨강도 특성을 규명하고 적정한 형상비를 2.5로 제시하였으며, GFRP 보강재의 두께 및 높이에 따른 설계휨강도 산정식을 제시하고 그 식의 적정성을 실험과 이론해석에 의해 입증하였다.

PCTC 박판 블록 용접 변형에 관한 연구 (A Study on Welding Deformation of thin plate block in PCTC)

  • 강성구;양종수;김호경
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.97-97
    • /
    • 2009
  • The use of thin plate increases due to the need for light weight in large ship. Thin plate is easily distorted and has residual stress by welding heat. Therefore, the thin plate should be carefully joined to minimize the welding deformation which costs time and money for repair. For one effort to reduce welding deformation, it is very useful to predict welding deformation before welding execution. There are two methods to analyze welding deformation. One is simple linear analysis. The other is nonlinear analysis. The simple linear analysis is elastic analysis using the equivalent load method or inherent strain method from welding experiments. The nonlinear analysis is thermo-elastic analysis which gives consideration to the nonlinearity of material dependent on temperature and time, welding current, voltage, speed, sequence and constraint. In this study, the welding deformation is analyzed by using thermo-elastic method for PCTC(Pure Car and Truck Carrier) which carries cars and trucks. PCTC uses thin plates of 6mm thickness which is susceptible to welding heat. The analysis dimension is 19,200mm(length) * 13,825mm(width) * 376mm(height). MARC and MENTAT are used as pre and post processor and solver. The boundary conditions are based on the real situation in shipyard. The simulations contain convection and gravity. The material of the thin block is mild steel with $235N/mm^2$ yield strength. Its nonlinearity of conductivity, specific heat, Young's modulus and yield strength is applied in simulations. Welding is done in two pass. First pass lasts 2,100 second, then it rests for 900 second, then second pass lasts 2,100 second and then it rests for 20,000 second. The displacement at 0 sec is caused by its own weight. It is maximum 19mm at the free side. The welding line expands, shrinks during welding and finally experiences shrinkage. It results in angular distortion of thin block. Final maximum displacement, 17mm occurs around welding line. The maximum residual stress happens at the welding line, where the stress is above the yield strength. Also, the maximum equivalent plastic strain occurs at the welding line. The plastic strain of first pass is more than that of second pass. The flatness of plate in longitudinal direction is calculated in parallel with the direction of girder and compared with deformation standard of ${\pm}15mm$. Calculated value is within the standard range. The flatness of plate in transverse direction is calculated in perpendicular to the direction of girder and compared with deformation standard of ${\pm}6mm$. It satisfies the standard. Buckle of plate is calculated between each longitudinal and compared with the deformation standard. All buckle value is within the standard range of ${\pm}6mm$.

  • PDF

주근비와 편심거리에 따른 고강도 콘크리트 기둥의 거동 (Behavior of High-Strength Concrete Columns by Longitudinal Reinforcement Ratio and Eccentric Distance)

  • 김재한;김경희;최명신;이광수;반병열;신성우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.529-532
    • /
    • 1999
  • With increasing use of high-strength concrete tied columns in structural engineering, it becomes necessary to examine the applicability of related sections of the current design codes. This experimental study was conducted to investigate the behavior of eccentrically loaded high-strength concrete columns. Column specimens with concrete strength 234, 437, 703kgf/㎠ were tested under monotonically increasing eccentric compression. The test parameters included the longitudinal reinforcement ratio, eccentric distance and concrete compressive strength. The analytical results obtained from the stress-strain relationship and the ACI's equivalent rectangular stress block are compared with experimental test results.

  • PDF

특수 차량용 정용량 피스톤 펌프의 개발에 관한 연구 (The Study on Development of Fixed Displacement Piston Pump for Special Access Vehicle)

  • 박정호;김문경;최석창
    • 한국기계가공학회지
    • /
    • 제9권3호
    • /
    • pp.19-27
    • /
    • 2010
  • Cylinder block is driven by tapered piston for bent-axis type piston pump, so that geometrical mechanism is very complicate. Piston rod must have not separated from shaft when shaft and piston rod is assembled. For this reason, shaft design is changed. Finite element analysis is performed for analyzed structural stability and flexible dynamic behavior. The result of the analysis, maximum equivalent stress occurred under yield stress, therefore structural stability is satisfactory. and flexible dynamic analysis give useful information about driving gear. These background data is avail of manufacture of piston pump.

고유변형도를 경계조건으로 갖는 대형 각(殼) 구조물 열변형 해석법 개발 (Development of Thermal Distortion Analysis Method on Large Shell Structure Using Inherent Strain as Boundary Condition)

  • 하윤석
    • 대한조선학회논문집
    • /
    • 제45권1호
    • /
    • pp.93-100
    • /
    • 2008
  • There are two ways of conventional thermal distortion analysis. One is the thermal elasto-plastic analysis and the other is the equivalent forces method based on inherent strain. The former needs exorbitant analysis time, while the latter cannot obtain results of stress field and it needs much time consumption with loads modeling on curved plates. Such faults in two methods have made difficulties in thermal distortion analysis of a large structure like ship hull. In order to solve them, new kind of thermal distortion analysis method was developed. We devised that the inherent strains was used as direct input factors in forms of boundary conditions. It was embodied by using thermal expansion coefficient in commercial code. We used the pre-calculated inherent strain as thermal expansion coefficient, and endowed nodes with imaginary temperatures. This method was already adopted at hull block welding distortion analysis which was considered as impossible, and gave productive results such as reduction of work time in the dry dock.

Crack growth rate evaluation of alloys 690/152 by numerical simulation of extracted CT specimens

  • Lee, S.H.;Kim, S.W.;Cho, C.H.;Chang, Y.S.
    • Nuclear Engineering and Technology
    • /
    • 제51권7호
    • /
    • pp.1805-1815
    • /
    • 2019
  • While nickel-based alloys have been widely used for power plants due to corrosion resistance and good mechanical properties, during the last couple of decades, failures of nuclear components increased gradually. One of main degradation mechanisms was primary water stress corrosion cracking at dissimilar metal welds of piping and reactor head penetrations. In this context, precise estimation of welding effects became an important issue for ensuring reliability of them. The present study deals with a series of finite element analyses and crack growth rate evaluation of Alloys 690/152. Firstly, variation of residual stresses and equivalent plastic strains was simulated taking into account welding of a cylindrical block. Subsequently, extraction and pre-cracking of compact tension (CT) specimens were considered from different locations of the block. Finally, crack growth curves of the alloys and heat affected zone were developed based on analyses results combined with experimental data in references. Characteristics of crack growth behaviors were also discussed in relation to mechanical and fracture parameters.

Effect of confinement on flexural ductility design of concrete beams

  • Chen, X.C.;Bai, Z.Z.;Au, F.T.K.
    • Computers and Concrete
    • /
    • 제20권2호
    • /
    • pp.129-143
    • /
    • 2017
  • Seismic design of reinforced concrete (RC) structures requires a certain minimum level of flexural ductility. For example, Eurocode EN1998-1 directly specifies a minimum flexural ductility for RC beams, while Chinese code GB50011 limits the equivalent rectangular stress block depth ratio at peak resisting moment to achieve a certain nominal minimum flexural ductility indirectly. Although confinement is effective in improving the ductility of RC beams, most design codes do not provide any guidelines due to the lack of a suitable theory. In this study, the confinement for desirable flexural ductility performance of both normal- and high-strength concrete beams is evaluated based on a rigorous full-range moment-curvature analysis. An effective strategy is proposed for flexural ductility design of RC beams taking into account confinement. The key parameters considered include the maximum difference of tension and compression reinforcement ratios, and maximum neutral axis depth ratio at peak resisting moment. Empirical formulae and tables are then developed to provide guidelines accordingly.