• Title/Summary/Keyword: equivalent stress block

Search Result 42, Processing Time 0.029 seconds

Theoretical analysis of stress-strain behavior of multi-layer RC beams under flexure

  • Ertekin Oztekin
    • Structural Engineering and Mechanics
    • /
    • v.90 no.5
    • /
    • pp.505-515
    • /
    • 2024
  • In this study, obtaining theoretical stress-strain curves and determining the parameters defining the equivalent rectangular stress block were aimed for 3 and 4-layered rectangular Reinforced Concrete (RC) cross-sections subjected to flexure. For these aims, the analytical stress-strain model proposed by Hognestad was chosen for the concrete grades (20 MPa≤fck≤60 MPa) used in this study. The tensile strength of the concrete was neglected and the thickness of the concrete layers in the compression zone of the concrete cross-section was taken as equal. In addition, while concrete strength was kept constant within each layer, concrete strengths belonging to separate layers were increased from the neutral axis towards the outer face of the compression zone of the concrete cross-section. After the equivalent rectangular stress block parameters were determined by numerical iterations, variations of these parameters depending on concrete strength in layers and layer numbers were obtained. Finally, some analytical equations have been proposed to predict the equivalent stress block parameters for the 3 and 4-layered RC cross-sections and validities of these proposed equations were shown by different metrics in this study.

Optimization of Design of Safety Block by Structural Analysis (구조해석을 통한 안전블록 설계 최적화)

  • Nam, K.W.;Gwon, H.S.;Son, C.S.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.71-76
    • /
    • 2010
  • The safety block which prevents drop of laborers at high altitude was analyzed by finite element method. Elastic analysis was done by Ansys ver. 11.0. and tetrahedral meshing was used. As load applied more vertically at the fixed face of saw tooth, the stress concentration became smaller and the load distributed broader. When load worked at saw tooth and the shape was more straight to the direction of load, most stresses except principal stress became smaller. When the area of the load increased, principal stress and equivalent stress could be decreased simultaneously. A principal stress and other various stresses occurred in 3D shape, therefore revised model which has smaller equivalent stress than other models shows excellence on the stability and the credibility.

Distribution of the Equivalent Rectangular Stress Block for High-Strength Polymer Concrete Beams (고강도 폴리머 콘크리트보의 등가직사각형 응력분포)

  • 김관호;연규석;김남길;조규우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.915-920
    • /
    • 2001
  • This study was conducted to analysis the distribution of the rectangular stress block for high-strength polymer concrete beam. C-shaped specimens were produced and tested to compute parameters of the rectangular stress block. They were $\kappa_{1}$ = 0.73, $\kappa_{3}$ = 0.94 and $\gamma$= 0.845, respectively. Experimental value of flexural strength of beam was same to be compared with theoretical value. But there is desirable to need many experimental data in order to exact design of polymer concrete structure.

  • PDF

Effects of Specimen Length on Flexural Compressive Strength of Polymer Concrete (부재의 길이가 폴리머 콘크리트의 휨압축 강도에 미치는 영향)

  • 연규석;김남길;주명기;유근우;권윤환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.99-104
    • /
    • 2002
  • In this paper the influence or specimen length on flexural compressive strength and parameter or equivalent rectangular stress block of polymer concrete was evaluated. For this purpose, a series of C-shaped specimens subjected to eccentric compression were tested using four different length-to-depth ratios(from 1.0, 2.0, 3.0 and 4.0) of specimens with compressive strength of 1,020kgf/cm$^2$. Results indicate that for the region of h/c$\leq$3.0 the reduction in equivalent rectangular stress block depth and flexural compressive strength with increase of length-to-depth ratios was apparent but for the region of h/c$\geq$3.0 they were nearly constant. It means that for the region of h/c$\geq$3.0 effect of specimen length on equivalent rectangular stress block depth and flexural compressive strength was negligible. It was also founded that the effect of specimen length on v, a coefficient of strength, that was from 0.84 to 0.86 regardless of h/c was petty. Finally, predictive equation is, suggested by using modified law of effect of specimen length and results.

  • PDF

A Study for Assumption of Stress Block Parameter for High-Strength Concrete (고강도 콘크리트 유효응력블럭 계수 추정에 관한 연구)

  • Jeong, Min-Chul;Yun, Sung-Hwan;Jeon, Jeong-Moon;Lee, Do-Hyung;Park, Tae-Hyo;Kong, Jung-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.141-142
    • /
    • 2010
  • This study is related with assumption of stress block parameter for high-strength concrete. The equivalent stress distribution block of KCI design code isn't matched with the real stress distribution of high strength concrete. In this study, we tried to suggest new type of stress block parameter based on both previous test data and theoretical process.

  • PDF

Improving design limits of strength and ductility of NSC beam by considering strain gradient effect

  • Ho, J.C.M.;Peng, J.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.2
    • /
    • pp.185-207
    • /
    • 2013
  • In flexural strength design of normal-strength concrete (NSC) beams, it is commonly accepted that the distribution of concrete stress within the compression zone can be reasonably represented by an equivalent rectangular stress block. The stress block it governed by two parameters, which are normally denoted by ${\alpha}$ and ${\beta}$ to stipulate the width and depth of the stress block. Currently in most of the reinforced concrete (RC) design codes, ${\alpha}$ and ${\beta}$ are usually taken as 0.85 and 0.80 respectively for NSC. Nonetheless, in an experimental study conducted earlier by the authors on NSC columns, it was found that ${\alpha}$ increases significantly with strain gradient, which means that larger concrete stress can be developed in flexure. Consequently, less tension steel will be required for a given design flexural strength, which improves the ductility performance. In this study, the authors' previously proposed strain-gradient-dependent concrete stress block will be adopted to produce a series of design charts showing the maximum design limits of flexural strength and ductility of singly-and doubly-NSC beams. Through the design charts, it can be verified that the consideration of strain gradient effect can improve significantly the flexural strength and ductility design limits of NSC beams.

Nominal Strength and Concrete Stress Block for Strength Analysis of Flexure and Compression Member (휨.압축 부재 강도 해석을 위한 콘크리트 압축 응력블럭 및 공칭 강도)

  • Lim, Kang-Sup;Sin, Sung-Jin;Choi, Jin-Ho;Lee, Jae-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.993-996
    • /
    • 2008
  • Compression stress block used to concrete structure design substitutes equivalent triangle, rectangle, trapezoid and parabola-rectangle stress block for actual concrete stress distribution. Its shape is different in design code of the major advanced countries. It reflects the material feature of each of country. Presently, compression stress block of korea concrete design code is equal to it of ACI code that doesn't reflect the material feature of the high strength concrete. So, many research conclusions showed that it is not reasonable. The study compares concrete stress blocks of the major advanced countries and does an experiment on concrete compression stress block to know the material feature of the concrete in korea. It obtains the operating load and the concrete strain in experiment and draw stress block parameters. It compares stress block parameters applied to design code with those by the experiment conclusion. In addition, It compares and analyses nominal axial force-moment diagram by the stress block of the major advanced countries.

  • PDF

Block Lifting Analysis to Examine the Cause of Cracking in the Hopper Top Plate (블록 리프팅 시 Hopper Tank부 균열 발생 가능성 검토를 위한 구조해석)

  • KIM SANG-IL
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.1 s.68
    • /
    • pp.16-19
    • /
    • 2006
  • With the fast growth of the shipbuilding industry, the number of lifting lugs used every year has reached onehundred. This paper is aimed at examining the cause of cracking in the hopper top plate, due to block lifting. First of all, we have investigated the fracture surface in the occurrence position of the crack of the hopper top plate, using the scanning electron microscope. In this study, we have evaluated the structural strength for COT super block under present lifting conditions. For this purpose, the equivalent stresses have been calculated by linear elastic analysis, using the finite element program ABAQUS.

An Experimental Study on the Flexural Strength and Ductility Capacity of Reinforced High Performance Concrete Beams (고성능 철근콘크리트 보의 휨강도 및 연성능력에 관한 실험적 연구)

  • 김용부;고만영;김상우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.501-506
    • /
    • 1998
  • This paper is an experimental study on the flexural strength and ductility capacity of reinforced high performance concrete beams with the concrete which has compressive strength of 600~700kg/$\textrm{cm}^2$, slump value of 20~25cm and slump-flow value of 60~70cm. Total 8 beams with different tensile reinforcement ratio and pattern of loading were tested. Form the results of reinforced high performance concrete beams, the equivalent stress block parameters proposed by MacGregor et al. or New Zealand code are recommended to use. Also, an extreme fiber concrete compressive strain of reinforced high performance concrete beams are distributed 0.0033~0.0048. In reinforced high performance concrete beams, reinforcement ratio in order to insure curvature ductility index 2 and 4 propose by ACI code should be less than those of reinforced normal strength concrete beams.

  • PDF

Effect of strain ratio variation on equivalent stress block parameters for normal weight high strength concrete

  • Kumar, Prabhat
    • Computers and Concrete
    • /
    • v.3 no.1
    • /
    • pp.17-28
    • /
    • 2006
  • Replacement of actual stress distribution in a reinforced concrete (RC) flexural member with a simpler geometrical shape, which maintains magnitude and location of the resultant compressive force, is an acceptable conceptual trick. This concept was originally perfected for normal strength concrete. In recent years, high strength concrete (HSC) has been introduced and widely used in modern construction. The stress block parameters require updating to account for special features of HSC in the design of flexural members. In future, more varieties of concrete may be developed and a corresponding design procedure of RC flexural members will be required. The usual practice is to conduct large number of experiments on various sizes of specimen and then evolve an empirical relation. This paper presents a numerical procedure through which the stress block parameters can be numerically derived for a given strain ratio variation. The material model for concrete is presented and computational procedure is described. This procedure is illustrated with several variations of strain ratio. The advantages of numerical procedure are that it costs less and it can be used with new material models for any new variety of concrete.