• 제목/요약/키워드: equivalent stress block

검색결과 42건 처리시간 0.019초

Theoretical analysis of stress-strain behavior of multi-layer RC beams under flexure

  • Ertekin Oztekin
    • Structural Engineering and Mechanics
    • /
    • 제90권5호
    • /
    • pp.505-515
    • /
    • 2024
  • In this study, obtaining theoretical stress-strain curves and determining the parameters defining the equivalent rectangular stress block were aimed for 3 and 4-layered rectangular Reinforced Concrete (RC) cross-sections subjected to flexure. For these aims, the analytical stress-strain model proposed by Hognestad was chosen for the concrete grades (20 MPa≤fck≤60 MPa) used in this study. The tensile strength of the concrete was neglected and the thickness of the concrete layers in the compression zone of the concrete cross-section was taken as equal. In addition, while concrete strength was kept constant within each layer, concrete strengths belonging to separate layers were increased from the neutral axis towards the outer face of the compression zone of the concrete cross-section. After the equivalent rectangular stress block parameters were determined by numerical iterations, variations of these parameters depending on concrete strength in layers and layer numbers were obtained. Finally, some analytical equations have been proposed to predict the equivalent stress block parameters for the 3 and 4-layered RC cross-sections and validities of these proposed equations were shown by different metrics in this study.

구조해석을 통한 안전블록 설계 최적화 (Optimization of Design of Safety Block by Structural Analysis)

  • 남기우;권효성;손창석
    • 동력기계공학회지
    • /
    • 제14권3호
    • /
    • pp.71-76
    • /
    • 2010
  • The safety block which prevents drop of laborers at high altitude was analyzed by finite element method. Elastic analysis was done by Ansys ver. 11.0. and tetrahedral meshing was used. As load applied more vertically at the fixed face of saw tooth, the stress concentration became smaller and the load distributed broader. When load worked at saw tooth and the shape was more straight to the direction of load, most stresses except principal stress became smaller. When the area of the load increased, principal stress and equivalent stress could be decreased simultaneously. A principal stress and other various stresses occurred in 3D shape, therefore revised model which has smaller equivalent stress than other models shows excellence on the stability and the credibility.

고강도 폴리머 콘크리트보의 등가직사각형 응력분포 (Distribution of the Equivalent Rectangular Stress Block for High-Strength Polymer Concrete Beams)

  • 김관호;연규석;김남길;조규우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.915-920
    • /
    • 2001
  • This study was conducted to analysis the distribution of the rectangular stress block for high-strength polymer concrete beam. C-shaped specimens were produced and tested to compute parameters of the rectangular stress block. They were $\kappa_{1}$ = 0.73, $\kappa_{3}$ = 0.94 and $\gamma$= 0.845, respectively. Experimental value of flexural strength of beam was same to be compared with theoretical value. But there is desirable to need many experimental data in order to exact design of polymer concrete structure.

  • PDF

부재의 길이가 폴리머 콘크리트의 휨압축 강도에 미치는 영향 (Effects of Specimen Length on Flexural Compressive Strength of Polymer Concrete)

  • 연규석;김남길;주명기;유근우;권윤환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.99-104
    • /
    • 2002
  • In this paper the influence or specimen length on flexural compressive strength and parameter or equivalent rectangular stress block of polymer concrete was evaluated. For this purpose, a series of C-shaped specimens subjected to eccentric compression were tested using four different length-to-depth ratios(from 1.0, 2.0, 3.0 and 4.0) of specimens with compressive strength of 1,020kgf/cm$^2$. Results indicate that for the region of h/c$\leq$3.0 the reduction in equivalent rectangular stress block depth and flexural compressive strength with increase of length-to-depth ratios was apparent but for the region of h/c$\geq$3.0 they were nearly constant. It means that for the region of h/c$\geq$3.0 effect of specimen length on equivalent rectangular stress block depth and flexural compressive strength was negligible. It was also founded that the effect of specimen length on v, a coefficient of strength, that was from 0.84 to 0.86 regardless of h/c was petty. Finally, predictive equation is, suggested by using modified law of effect of specimen length and results.

  • PDF

고강도 콘크리트 유효응력블럭 계수 추정에 관한 연구 (A Study for Assumption of Stress Block Parameter for High-Strength Concrete)

  • 정민철;윤성환;전정문;이도형;박대효;공정식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.141-142
    • /
    • 2010
  • 본 연구는 고강도 콘크리트 유효응력 블록 계수 추정과 관련한 연구이다. 현행 KCI 코드에서 제시하는 등가직사각형 응력 분포는 고강도 콘크리트의 강도 분포를 정확히 예측하지 못하며, 실험 데이터에 기반한 제안식이 대부분이므로, 본 연구에서는 기존 연구자의 실험 데이터와 응력매개벼수의 이론적 개념을 바탕으로 하여 고강도 콘크리트의 유효응력블럭 계수 추정에 관한 연구를 수행하였다.

  • PDF

Improving design limits of strength and ductility of NSC beam by considering strain gradient effect

  • Ho, J.C.M.;Peng, J.
    • Structural Engineering and Mechanics
    • /
    • 제47권2호
    • /
    • pp.185-207
    • /
    • 2013
  • In flexural strength design of normal-strength concrete (NSC) beams, it is commonly accepted that the distribution of concrete stress within the compression zone can be reasonably represented by an equivalent rectangular stress block. The stress block it governed by two parameters, which are normally denoted by ${\alpha}$ and ${\beta}$ to stipulate the width and depth of the stress block. Currently in most of the reinforced concrete (RC) design codes, ${\alpha}$ and ${\beta}$ are usually taken as 0.85 and 0.80 respectively for NSC. Nonetheless, in an experimental study conducted earlier by the authors on NSC columns, it was found that ${\alpha}$ increases significantly with strain gradient, which means that larger concrete stress can be developed in flexure. Consequently, less tension steel will be required for a given design flexural strength, which improves the ductility performance. In this study, the authors' previously proposed strain-gradient-dependent concrete stress block will be adopted to produce a series of design charts showing the maximum design limits of flexural strength and ductility of singly-and doubly-NSC beams. Through the design charts, it can be verified that the consideration of strain gradient effect can improve significantly the flexural strength and ductility design limits of NSC beams.

휨.압축 부재 강도 해석을 위한 콘크리트 압축 응력블럭 및 공칭 강도 (Nominal Strength and Concrete Stress Block for Strength Analysis of Flexure and Compression Member)

  • 임강섭;신성진;최진호;이재훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.993-996
    • /
    • 2008
  • 콘크리트 구조물 설계에 사용되는 콘크리트 압축 응력블럭은 실제 응력분포를 등가의 삼각형, 직사각형, 사다리꼴 또는 포물선-직선 등 여러 형태로 나타낸 것이다. 이러한 콘크리트의 압축 응력블럭은 주요 선진국의 설계기준마다 그 형태가 조금씩 다르며, 각 나라 콘크리트의 재료적 특성을 반영하여 적용하고 있다. 현재, 우리나라 콘크리트 설계기준에 적용하고 있는 직사각형 압축 응력블럭은 ACI 설계기준과 동일한 형태이고, 이는 고강도 콘크리트의 재료적 특성을 반영하지 못하여 비합리적 이라는 여러 연구결과가 발표되어왔다. 본 연구는 주요 선진국의 설계기준에 적용되는 콘크리트 압축 응력블럭에 대해 검토하였으며, 우리나라 콘크리트의 재료적 특성을 알기 위해 콘크리트 압축 응력블럭 실험을 실시하였다. 실험을 통해 하중 및 변형률을 얻었으며, 실험 결과에 의한 응력블럭계수를 도출하였다. 실험에 의한 응력블럭계수와 주요 선진국의 설계기준에 적용하는 응력블럭계수 값들을 비교.분석하였다. 또한, 주요 설계기준의 응력블럭에 따른 공칭 축력-모멘트 상관도를 비교 분석하였다.

  • PDF

블록 리프팅 시 Hopper Tank부 균열 발생 가능성 검토를 위한 구조해석 (Block Lifting Analysis to Examine the Cause of Cracking in the Hopper Top Plate)

  • 김상일
    • 한국해양공학회지
    • /
    • 제20권1호
    • /
    • pp.16-19
    • /
    • 2006
  • With the fast growth of the shipbuilding industry, the number of lifting lugs used every year has reached onehundred. This paper is aimed at examining the cause of cracking in the hopper top plate, due to block lifting. First of all, we have investigated the fracture surface in the occurrence position of the crack of the hopper top plate, using the scanning electron microscope. In this study, we have evaluated the structural strength for COT super block under present lifting conditions. For this purpose, the equivalent stresses have been calculated by linear elastic analysis, using the finite element program ABAQUS.

고성능 철근콘크리트 보의 휨강도 및 연성능력에 관한 실험적 연구 (An Experimental Study on the Flexural Strength and Ductility Capacity of Reinforced High Performance Concrete Beams)

  • 김용부;고만영;김상우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.501-506
    • /
    • 1998
  • This paper is an experimental study on the flexural strength and ductility capacity of reinforced high performance concrete beams with the concrete which has compressive strength of 600~700kg/$\textrm{cm}^2$, slump value of 20~25cm and slump-flow value of 60~70cm. Total 8 beams with different tensile reinforcement ratio and pattern of loading were tested. Form the results of reinforced high performance concrete beams, the equivalent stress block parameters proposed by MacGregor et al. or New Zealand code are recommended to use. Also, an extreme fiber concrete compressive strain of reinforced high performance concrete beams are distributed 0.0033~0.0048. In reinforced high performance concrete beams, reinforcement ratio in order to insure curvature ductility index 2 and 4 propose by ACI code should be less than those of reinforced normal strength concrete beams.

  • PDF

Effect of strain ratio variation on equivalent stress block parameters for normal weight high strength concrete

  • Kumar, Prabhat
    • Computers and Concrete
    • /
    • 제3권1호
    • /
    • pp.17-28
    • /
    • 2006
  • Replacement of actual stress distribution in a reinforced concrete (RC) flexural member with a simpler geometrical shape, which maintains magnitude and location of the resultant compressive force, is an acceptable conceptual trick. This concept was originally perfected for normal strength concrete. In recent years, high strength concrete (HSC) has been introduced and widely used in modern construction. The stress block parameters require updating to account for special features of HSC in the design of flexural members. In future, more varieties of concrete may be developed and a corresponding design procedure of RC flexural members will be required. The usual practice is to conduct large number of experiments on various sizes of specimen and then evolve an empirical relation. This paper presents a numerical procedure through which the stress block parameters can be numerically derived for a given strain ratio variation. The material model for concrete is presented and computational procedure is described. This procedure is illustrated with several variations of strain ratio. The advantages of numerical procedure are that it costs less and it can be used with new material models for any new variety of concrete.