• Title/Summary/Keyword: equivalent static pressure

Search Result 41, Processing Time 0.02 seconds

A Study on the Equivalent Static Wind Load Estimation of Large Span Roofs (대스팬 지붕구조물의 등가정적 풍하중 산정에 관한 연구)

  • Lee, Myung-Ho;Kim, Ji-Young;Kim, Dae-Young;Kim, Sang-Dae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.1 s.19
    • /
    • pp.83-90
    • /
    • 2006
  • The GF(Gust Factor) method is usually used as a method to evaluate equivalent static wind loads for general structures. The GF method is performed on the assumption that the shape of the equivalent static wind load profile is typically similar to that of mean wind loads. The shape of fluctuating wind loads could be quite different with that of the mean wind loads in case of large-span structures. So, the effect of higher modes as well as first mode must be considered to evaluate the wind loads. In this study, the ACS (Advanced Conditional Sampling) method is suggested to evaluate of equivalent static wind loads after investigating about GF and LRC method. The An method ran derive effective static wind loads by combining wind pressures and inertia forces of a structure chosen at a maximum load effect. The maximum load effect is assessed with the time history analysis using pressure data measured in wind tunnel tests. Equivalent static wind loads evaluated using ACS, GF, and LRC methods are compared to verify the effectiveness of ACS method.

  • PDF

A Study on the Analysis of Seawater Pipeline Network for Open Rack Vaporizers (천연가스 기화기용 해수배관망 해석에 관한 연구)

  • Kim, Ho-Yeon;Park, Jong-Hark;Lee, Jeong-Hwan;Kim, Dong-Hyuk
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1760-1764
    • /
    • 2003
  • This study was carried out to establish an analytical method on the open circuit seawater pipeline network for open rack vaporizers(ORVs). The linear theory method was chosen to solve this network system. In particular, the method was modified to calculate the static pressure at each node and to determine the operating condition of each pump with the mean static pressure of pumps and ORVs. The proposed method is the first report demonstrating that can be used as a solver for the complicated open circuit. Also, the method indicated the importance for exactly calculating equivalent length of pipes including valves, bends, fittings, and others to raise the accuracy. Although this technique is good for solving this system, it is still required to improve the convergence rate.

  • PDF

Method for Determination of Maximum Allowable Pressure of Pressure Vessel Considering Detonation (폭굉을 고려한 압력용기 최대허용압력 결정방법의 제안)

  • Choi, Jinbok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.5
    • /
    • pp.235-241
    • /
    • 2018
  • The internal pressure is a critical parameter for designing a pressure vessel. The static pressure that a pressure vessel must withstand is usually determined according to the various codes and standards with simple formula or numerical simulations considering the geometric parameters such as diameter and thickness of a vessel. However, there is no specific codes or technical standards we can use practically for designing of pressure vessels which have to endure the detonation pressure. Detonation pressure is a kind of dynamic pressure which causes an impulsive pressure on the vessel wall in a extremely short time duration. In addition, it is known that the magnitude of reflected pressure at the vessel wall due to the explosion can be over twice the incident pressure. Therefore, if we only consider the reflected pressure, the design of the pressure vessel can be too conservative from the economical point of view. In this study, we suggest a practical method to evaluate the magnitude of maximum allowable pressure that the pressure vessel can withstand against the detonation inside a vessel. As an example to validate the proposed method, we consider the pressure vessel containing hydrogen gas.

Fluid-structure interaction of a tensile fabric structure subjected to different wind speeds

  • Valdes-Vazquez, Jesus G.;Garcia-Soto, Adrian D.;Hernandez-Martinez, Alejandro;Nava, Jose L.
    • Wind and Structures
    • /
    • v.31 no.6
    • /
    • pp.533-548
    • /
    • 2020
  • Despite the current technologic developments, failures in existent tensile fabric structures (TFS) subjected to wind do happen. However, design pressure coefficients are only obtained for large projects. Moreover, studies on TFSs with realistic supporting frames, comparing static and dynamic analyses and discussing the design implications, are lacking. In this study, fluid-Structure analyses of a TFS supported by masts and inclined cables, by subjecting it to different wind speeds, are carried out, to gain more understanding in the above-referred aspects. Wind-induced stresses in the fabric and axial forces in masts and cables are assessed for a hypar by using computational fluid dynamics. Comparisons are carried out versus an equivalent static analysis and also versus loadings deemed representative for design. The procedure includes the so-called form-finding, a finite element formulation for the TFS and the fluid formulation. The selected structure is deemed realistic, since the supporting frame is included and the shape and geometry of the TFS are not uncommon. It is found that by carrying out an equivalent static analysis with the determined pressure coefficients, differences of up to 24% for stresses in the fabric, 5.4% for the compressive force in the masts and 21% for the tensile force in the cables are found with respect to results of the dynamic analysis. If wind loads commonly considered for design are used, significant differences are also found, specially for the reactions at the supporting frame. The results in this study can be used as an aid by designers and researchers.

Analysis on the Dynamic Characteristics of Externally Pressurized Porous Thrust Air Bearings (다공질정압 Thrust공기 베어링의 동특성 해석)

  • Park, Cheon-Hong;Lee, Hu-Sang
    • 연구논문집
    • /
    • s.23
    • /
    • pp.5-13
    • /
    • 1993
  • The present work deals with the theoretical prediction of static & dynamic characteristic of annular type externally pressurized thrust air bearings with metal-sintered porous media. For the evaluation of surface loading effect by machining, it is assumed that the flow at the porous surface is dominant and which is equivalent to the flow through orifice. Finite different method with over-relaxation method is used to solve the numerical problems. The influences of radius ratio, supply pressure and squeeze number on performances are investigated, as the results. The results of this study can be used to predict the optimal running condition and stable realm of porous bearings.

  • PDF

Combination coefficient of ESWLs of a high-rise building with an elliptical cross-section

  • Wang, Qinhua;Yu, Shuzhi;Ku, Chiujen;Garg, Ankit
    • Wind and Structures
    • /
    • v.31 no.6
    • /
    • pp.523-532
    • /
    • 2020
  • As the height and flexibility of high-rise buildings increase, the wind loads become more dominant and the combination coefficient of Equivalent Static Wind Loads (ESWLs) should be considered when they are used in the structural design. In the first phase of the study, a brief introduction to the theory on the combination coefficient for high-rise buildings was given and then the time history of wind-induced responses of a 208-meter high-rise building with an elliptical cross-section was presented based on the wind tunnel test results for pressure measurement. The correlation between wind-induced responses was analyzed and the combination coefficients of ESWLs of the high-rise buildings using Turkstra's rule, and Asami's method, were calculated and compared with related design codes, e.g., AIJ-RLB, ASCE 7-10, and China Load Code for structural design. The results of the study showed that the combination coefficients from Asami's method are conservative compared with the other three methods. The results of this paper would be helpful to the wind-resistant design of high-rise buildings with elliptical cross-section.

Design and Characteristic of the AC Solenoid Valve (AC 솔레노이드 밸브의 설계 및 특성)

  • Kim, Dong-Soo;Jeon, Yong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3056-3061
    • /
    • 2007
  • The technology of AC solenoid valves is now considered as a core technology in the fields of the production line of semi-conductor chips and the micro fluid chips for medical applications. And AC solenoid valves, which operate by compressed air, are characterized by high speed response, great repeatability and that the pressure on the cross sectional area of poppet is kept constant regardless of the fluctuation of the pressure exerted on the ports. In this study, AC solenoid valves that posses the high-speed responsibility and the high rate of flow have designed and analyzed through the law of equivalent magnetic circuit and Finite Element Method (FEM) respectively. In case of poppet, Flow field characteristic was analyzed by the variation of poppet and it was able to display flow field by changing the location of the poppet. Also, we verified possibility of the design through the static and dynamic pressure and the 3D distribution curve of the force by working the front poppet.

  • PDF

An Investigation into Micro Valve Field and Flow Field Characteristic of 7mm Width (7mm폭의 Micro Valve 자장 및 유동특성 고찰)

  • Jeon, Y.S.;Kim, D.S.;Shin, D.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.657-658
    • /
    • 2006
  • Recently, the micro on-off valves have been focused on core technology in the fields of the production line of semi-conductor chips and the micro fluid chips for bio-medical applications. A key characteristics for micro valve, operated by compressed air, are high speed response and great repeatability. Indeed, it is also important to keep the pressure on the cross-sectional area of the poppet to be constant regardless of the fluctuation of the pressure exerted on the ports. In this study, we have designed and analysed the high-speed and high flow rate micro on-off valve using the analogy of equivalent magnetic circuit and Finite Element Method(FEM) respectively. In case of poppet, flow field characteristic was analyzed by the variation of poppet and it was able to display flow field by changing the location of the poppet. Also, we verified possibility of the design through the static and dynamic pressure and the 3D distribution curve of the force by working the front poppet.

  • PDF

Blast Analysis of Single Degree of Freedom Plant Structures Considering Static Displacement (정적변위를 고려한 플랜트 구조물의 단자유도 폭발 해석)

  • Lee, Jae-Kyoon;Lee, Seung-Hoon;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.317-324
    • /
    • 2022
  • In this paper, an analysis method that considers the initial static displacement of structural members using an equivalent single-degree-of-freedom system is presented. Newmark's dynamic analysis algorithm was improved to consider the effect of the initial static displacements of structural members. The effect of the initial static displacement on the maximum response according to the assumed duration of the blast load and natural period of the member was investigated. The effects of positive and negative static displacements on the maximum dynamic responses of structural members subjected to a positively applied blast load were also studied. Modified response charts for the shock-type and pressure-type waves are presented so that static displacements can easily be considered. Using a design example, we demonstrate the significance of the modified response chart that considers the static displacement. Based on the results of this study, the maximum response of a the structural member can be easily obtained whilst considering its initial static displacement. The modified response chart presented in this study can be used for the structural design of plants and military facilities.

Design and homogenization of metal sandwich tubes with prismatic cores

  • Zhang, Kai;Deng, Zichen;Ouyang, Huajiang;Zhou, Jiaxi
    • Structural Engineering and Mechanics
    • /
    • v.45 no.4
    • /
    • pp.439-454
    • /
    • 2013
  • Hollow cylindrical tubes with a prismatic sandwich lining designed to replace the solid cross-sections are studied in this paper. The sections are divided by a number of revolving periodic unit cells and three topologies of unit cells (Square, Triangle and Kagome) are proposed. Some types of multiple-topology designed materials are also studied. The feasibility and accuracy of a homogenization method for obtaining the equivalent parameters are investigated. As the curved elements of a unit cell are represented by straight elements in the method and the ratios of the lengths of the curved elements to the lengths of the straight elements vary with the changing number of unit cells, some errors may be introduced. The frequencies of the first five modes and responses of the complete and equivalent models under an internal static pressure and an internal step pressure are compared for investigating the scope of applications of the method. The lower bounds and upper bounds of the number of Square, Triangular and Kagome cells in the sections are obtained. It is shown that treating the multiple-topology designed materials as a separate-layer structure is more accurate than treating the structure as a whole.