• 제목/요약/키워드: equivalent plate element

검색결과 145건 처리시간 0.018초

모서리가 둥근 직육면체 중공볼을 가지는 2방향 중공슬래브의 효율적인 진동해석 (Efficient Vibration Analysis of a Biaxial Hollow Slab Having Hexahedron Balls with Rounded Corner)

  • 박현재;김민균;이동근;박용구;김현수
    • 한국전산구조공학회논문집
    • /
    • 제22권5호
    • /
    • pp.421-428
    • /
    • 2009
  • 본 연구에서는 2방향 중공슬래브의 효율적인 진동해석을 위하여 등가의 플레이트 모델을 개발하였다. 이를 위하여 3차원 입체요소 중공슬래브 모델에 대응하는 플레이트 슬래브 모델의 등가 질량과 강성을 산출하였다. 개발된 등가 플레이트 모델의 정확성과 효율성을 검증하기 위하여 예제해석을 수행하였다. 해석결과 등가 플레이트모델의 고유진동수는 3차원 입체요소모델과 비교하여 매우 정확한 것을 확인하였다. 또한 보행하중이 가해지는 2방향 중공슬래브에 대해 등가플레이트 모델과 3차원 입체요소 모델을 사용하여 시간이력해석을 수행한 후 그 결과를 비교하였다. 해석결과 등가의 플레이트 모델이 해석시간을 상당히 줄이면서도 3차원 입체요소 모델과 거의 일치하는 결과를 나타내는 것을 확인하였다.

Modal characteristics of partially perforated rectangular plate with triangular penetration pattern

  • Jhung, Myung J.;Jeong, Kyeong H.
    • Structural Engineering and Mechanics
    • /
    • 제55권3호
    • /
    • pp.583-603
    • /
    • 2015
  • There are so many applications of perforated pates with various penetration patterns. If they are penetrated regularly, it can be represented by solid plate with equivalent material properties, which has a benefit of finite element modelling and reducing computation time for the analysis. Because the equivalent material properties suggested already are not proper to be applicable for the dynamic analysis, it is necessary to extract the equivalent material properties for the dynamic analysis. Therefore, in this study, the equivalent modulus of elasticity are obtained for the perforated plate with a triangular penetration pattern by comparing the natural frequencies of the perforated plate with those of solid plate, which are represented with respect to the ligament efficacy. Using the equivalent material properties suggested, the modal analyses of the partially perforated rectangular plate with a triangular penetration pattern are performed and its applicability is shown by comparing natural frequencies of perforated and homogeneous solid plates from finite element method and analytical method.

EQUIVALENT MATERIAL PROPERTIES OF PERFORATED PLATE WITH TRIANGULAR OR SQUARE PENETRATION PATTERN FOR DYNAMIC ANALYSIS

  • Jhung, Myung-Jo;Jo, Jong-Chull
    • Nuclear Engineering and Technology
    • /
    • 제38권7호
    • /
    • pp.689-696
    • /
    • 2006
  • For a perforated plate, it is challenging to develop a finite element model due to the necessity of the fine meshing of the plate, especially if it is submerged in fluid. This necessitates the use of a solid plate with equivalent material properties. Unfortunately, the effective elastic constants suggested by the ASME code are deemed not valid for a modal analysis. Therefore, in this study the equivalent material properties of a perforated plate are suggested by performing several finite element analyses with respect to the ligament efficiencies.

평판의 국부적인 기하학적 변형을 모사하는 등가 요소 생성 (Dynamically equivalent element for an emboss embedded in a plate)

  • 송경호;박윤식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.301-305
    • /
    • 2002
  • Among many structural dynamics modification methods for plate and shell vibration problems, embedding an emboss to the surface is very efficient. But deciding an optimal position and shape using optimization algorithm needs defining geometry and remeshing the model for every iteration step to implement the method, which takes much numerical cost. An equivalent element produced here lessen the cost by representing the geometrical characteristics of an emboss using the element's material properties and thickness becoming a geometrically homogenous element of the base plate or shell. Some efficient factors which let the equivalent system have the same dynamical response as the original system embedded with emboss will be shown and the degree of equivalence will be tested in terms of natural frequency matching.

  • PDF

Free Vibration Analysis of Perforated Plate Submerged in Fluid

  • Jhung, Myung-Jo;Jo, Jong-Chull;Jeong, Kyeong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • 제20권9호
    • /
    • pp.1323-1338
    • /
    • 2006
  • An analytical method to estimate the coupled frequencies of the circular plate submerged in fluid is developed using the finite Fourier-Bessel series expansion and Rayleigh-Ritz method. To verify the validity of the analytical method developed, finite element method is used and the frequency comparisons between them are found to be in good agreement. For the perforated plate submerged in fluid, it is almost impossible to develop a finite element model due to the necessity of the fine meshing of the plate and the fluid at the same time. This necessitates the use of solid plate with equivalent material properties. Unfortunately the effective elastic constants suggested by the ASME code are found to be not valid for the modal analysis. Therefore in this study the equivalent material properties of perforated plate are suggested by performing several finite element analyses with respect to the ligament efficiencies.

다중 다공판 시스템에서 직관요소에 대한 전기음향등가회로법의 오류 (The Error Involved in the Equivalent Electroacoustic Circuit Approach for the Element of Straight Pipe in Multiple Layer Perforated Plate Systems)

  • 이동훈;권영필
    • 한국소음진동공학회논문집
    • /
    • 제13권3호
    • /
    • pp.180-185
    • /
    • 2003
  • The equivalent electroacoustic circuit approach has been conventionally used for the analysis of the multiple layer perforated plate system. However, it is found that an analogy error has been involved in the equivalent electroacoustic approach proposed by previous researchers for the element of straight pipe. Although the pipe between the perforated layers is a distributed element in the analogy, it has been treated as a parallel element by previous investigators. The analogy error is demonstrated by comparing the calculated absorption coefficients based on the parallel circuit and the distributed circuit, respectively, with the measured values by the two-microphone impedance tube method.

원통형셸의 초고주파 동적특성을 위한 등가평판모델 (An Equivalent Plate Model for the High-Frequency Dynamic Characteristics of Cylindrical Shells)

  • 이준근;이우식
    • 한국정밀공학회지
    • /
    • 제16권6호
    • /
    • pp.108-113
    • /
    • 1999
  • For cylindrical shells, the closed-form solutions are confined to the specific boundary and/or loading conditions. Though the finite element method is certainly a powerful solution approach for the structural dynamics problems, it has been well known to provide the solution reliable only in the low frequency region due to the inherent high sensitivities of structual and numerical modeling errors. Instead, the spectral element method has been proved to provide accurate dynamic characteristics of a structure even at the ultrasonic frequency region. Since the wave characteristic of a cylindrical shell becomes identical to that fo a flat plate as the frequency increases, an equivalent plate model (EPM) representing the high-frequency dynamic characteristics of the cylindrical shell is introduced herein. The EPM-based spectral element analysis solutions are compared with the known analytical solutions for the cylindrical shells to confirm the validity of the present modeling approach.

  • PDF

Simple method for static and dynamic analyses of guyed towers

  • Meshmesha, H.;Sennah, K.;Kennedy, J.B.
    • Structural Engineering and Mechanics
    • /
    • 제23권6호
    • /
    • pp.635-649
    • /
    • 2006
  • The static and dynamic responses of guyed telecommunication towers can be determined by using two models, the space truss element model, and the equivalent beam-column element model. The equivalent beam-column analysis is based on the determination of the equivalent shear, torsion, and bending rigidities as well as the equivalent area of the guyed mast. In the literature, two methods are currently available to determine the equivalent properties of lattice structures, namely: the unit load method, and the energy approach. In this study, an equivalent beam-column analysis is introduced based on an equivalent thin plate approach for lattice structures. A finite-element modeling, using suitably modified ABAQUS software, is used to investigate the accuracy of utilizing the different proposed methods in determining the static and dynamic responses of a guyed tower of 364.5-meter high subjected to static and seismic loading conditions. The results from these analyses are compared to those obtained from a finite-element modeling of the actual structure using 3-D truss and beam elements. Good agreement is shown between the different proposed beam-column models, and the model of the actual structure. However, the proposed equivalent thin plate approach is simpler to apply than the other two approaches.

알루미늄 압출재를 사용한 철도차량차체의 단위 압출재 최적설계 (An Optimal Design for Truss Core Unit of Railway Carbody of Aluminum Extrusion Plate)

  • 장창두;하윤석;조영천;신광복
    • 한국철도학회논문집
    • /
    • 제6권3호
    • /
    • pp.194-202
    • /
    • 2003
  • To make railway carbody light in weight has advantages at some aspects of both manufacturing and maintenance. Recently, railway carbodys of steel structure have been lightened their weight by using aluminum extrusion plate. for the additional lightening of railway carbody, an optimal design which maintains proper strength and minimizes weight must be achieved. Optimization which is used with finite element analysis for aluminum extrusion plate has the disadvantage of consuming much time. In this paper, the method of equivalent material property which is available to FEA code is established using the method of equivalent stiffness. This method for plate is expanded into the method for railway carbody structure with plates and shells. An objective function is established for maximum stiffness of unit aluminum extrusion plate using established method of equivalent material property. We performed an multi-objective optimization using the penalty function method. As a result, recommendable shapes and sizes of unit extrusion plate for under-frame of high speed train is presented.

Equivalent Plate Modeling of the Wing-Box Structure with Control Surface

  • Kim, Eun-Ho;Roh, Jin-Ho;Yoo, Seung-Jae;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권2호
    • /
    • pp.104-109
    • /
    • 2006
  • In this study, the equivalent plate model is developed using a finite element method(FEM) based on the first order shear deformation theory(FSDT). The substructure synthesis method is used to consider the control surface. For the verification of the equivalent model, the results of free vibration analysis are compared with the ones of 3D wing structure modeled by using the MSC/NASTRAN.