• 제목/요약/키워드: equivalent mechanical model

검색결과 492건 처리시간 0.025초

A new equivalent friction element for analysis of cable supported structures

  • Yan, Renzhang;Chen, Zhihua;Wang, Xiaodun;Liu, Hongbo;Xiao, Xiao
    • Steel and Composite Structures
    • /
    • 제18권4호
    • /
    • pp.947-970
    • /
    • 2015
  • An equivalent friction element is proposed to simulate the friction in cable-strut joints. Equivalent stiffness matrixes and load vectors of the friction element are derived and are unified into patterns for FEM by defining a virtual node specially to store internal forces. Three approaches are described to verify the rationality of the new equivalent friction element: applying the new element in a cable-roller model, and numerical solutions match well with experimental results; applying the element in a continuous sliding cable model, and theoretical values, numerical and experimental results are compared; and the last is applying it in truss string structures, whose results indicate that there would be a great error if the cable of cable supported structures is simulated with discontinuous cable model which is usually adopted in traditional finite element analysis, and that the prestress loss resulted from the friction in cable-strut joints would have adverse effect on the mechanical performance of cable supported structures.

잔류응력 이완 및 이의 평균응력 효과를 고려한 용접부 피로수명 평가 (Fatigue Life Estimation of Welded Components Considering Welding Residual Stress Relaxation and Its Mean Stress Effect)

  • 한승호;한정우;신병천;김재훈
    • 대한기계학회논문집A
    • /
    • 제27권1호
    • /
    • pp.175-182
    • /
    • 2003
  • The fatigue life of welded joints is sensitive to welding residual stress and complexity of their geometric shapes. To predict the fatigue life more reasonably. the effects of welding residual stress and its relaxation on their fatigue strengths should be considered quantitatively, which are often regarded to be equivalent to the effects of mean stresses by external loads. The hot-spot stress concept should be also adopted which can reduce the dependence of fatigue strengths for various welding details. Considering the factors mentioned above, a fatigue life prediction model using the modified Goodman's diagram was proposed. In this model, an equivalent stress was introduced which is composed of the mean stress based on the hot-spot stress concept and the relaxed welding residual stress. From the verification of the proposed model to real welding details, it is proved that this model can be applied to predict reasonably their fatigue lives.

Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation

  • Mohamed, Nazira;Eltaher, Mohamed A.;Mohamed, Salwa A.;Seddek, Laila F.
    • Structural Engineering and Mechanics
    • /
    • 제70권6호
    • /
    • pp.737-750
    • /
    • 2019
  • This paper investigates the static and dynamic behaviors of imperfect single walled carbon nanotube (SWCNT) modeled as a beam structure by using energy-equivalent model (EEM), for the first time. Based on EEM Young's modulus and Poisson's ratio for zigzag (n, 0), and armchair (n, n) carbon nanotubes (CNTs) are presented as functions of orientation and force constants. Nonlinear Euler-Bernoulli assumptions are proposed considering mid-plane stretching to exhibit a large deformation and a small strain. To simulate the interaction of CNTs with the surrounding elastic medium, nonlinear elastic foundation with cubic nonlinearity and shearing layer are employed. The equation governed the motion of curved CNTs is a nonlinear integropartial-differential equation. It is derived in terms of only the lateral displacement. The nonlinear integro-differential equation that governs the buckling of CNT is numerically solved using the differential integral quadrature method (DIQM) and Newton's method. The linear vibration problem around the static configurations is discretized using DIQM and then is solved as a linear eigenvalue problem. Numerical results are depicted to illustrate the influence of chirality angle and imperfection amplitude on static response, buckling load and dynamic behaviors of armchair and zigzag CNTs. Both, clamped-clamped (C-C) and simply supported (SS-SS) boundary conditions are examined. This model is helpful especially in mechanical design of NEMS manufactured from CNTs.

가상모델로부터 산출된 응력 등가정하중을 이용한 금속 성형품 및 단조품의 형상최적설계 (Shape Optimization of Metal Forming and Forging Products using the Stress Equivalent Static Loads Calculated from a Virtual Model)

  • 장환학;정성범;박경진
    • 대한기계학회논문집A
    • /
    • 제36권11호
    • /
    • pp.1361-1370
    • /
    • 2012
  • 본 논문은 응력 등가정하중을 이용하여 금속제조공정에서 원하는 성형품과 단조품의 최종형상을 얻기 위한 형상최적화 방법을 제안한다. 성형품의 최종형상은 블랭크의 형상에 따라 달라지고 단조품의 최종형상은 빌렛의 형상에 따라 달라진다. 따라서 원하는 형상의 제품을 얻기 위해 구조최적화방법 중 형상최적화방법을 적용하였다. 금속성형 공정은 비선형 동적해석을 수행하므로 등가정하중법을 이용한다. 등가정하중법 중 가상모델을 이용한 응력 등가정하중은 등가정하중을 산출하는 새로운 방법으로 재료 특성의 가치를 재정의하여 응력 등가정하중을 계산한다. 본 논문에 포함된 예제를 통해 원하는 제품의 최종형상을 얻기 위한 최적의 블랭크 및 빌렛 형상을 도출하여 제안한 방법의 유용성을 검증한다.

절삭조건에 따른 엔드밀링 가공시 전단 및 마찰 특성 분석(1. 상향 엔드밀링) (Analysis of Shear and Friction chacteristics in End milling with variable cutting condition (Part 1 Up-end milling))

  • Lee, Young-Moon;Yang, Seung-Han;Ming Chen;Jang, Seung-Il
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.223-228
    • /
    • 2003
  • In end milling processes, characterized by use of rotating tools, the underformed chip thickness varies periodically with the phase change of tool. In current study, as a new approach to analyse shear behaviors In the shear plane and chip-tool friction behavior chip-tool contact region during an end milling process. In this approach, an up-end milling process is transformed into an equivalent oblique cutting process. Experimental investigations for two sets of cutting tests i.e.. up-end milling and the equivalent oblique cutting test were performed to verify the presented model.

  • PDF

균열암반의 역학적 등가물성의 수치해석적 결정을 위한 2차원 및 3차원 해석의 비교 (Comparison of Two- and Three-dimensional Approaches for the Numerical Determination of Equivalent Mechanical Properties of Fractured Rock Masses)

  • 민기복;알렌토로발
    • 터널과지하공간
    • /
    • 제22권2호
    • /
    • pp.93-105
    • /
    • 2012
  • 균열암반의 등가역학적 물성을 수치해석적으로 결정할 때 2차원 및 3차원 해석을 비교하였다. 수직균열모델과 암반균열망(DFN) 모델이 균열암반의 형상으로 이용되었으며 3차원 모델으로부터 다양한 방향으로 2차원 모델을 절단하여 역학적 물성을 비교하였다. 본 연구의 지질데이터는 영국 셀라필드 지역의 자료를 기본으로 사용하였다. 직교균열모델에서는 컴플라이언스텐서의 변환을 이용한 해석적 방법이 물성결정을 위해 이용되었으며 암반균열망모델에서는 수치실험이 실시되었다. 2차원 모델에서는 균열이 항상 모델평면과 직교한다고 가정하기 때문에 탄성계수는 항상 3차원보다 크게 계산이 되었다. 2차원 해석에서의 포아송비는 3차원 해석보다 큰 값을 나타내는 경향이 있었으나 반대의 경향도 관찰되었다. 본 논문은 3차원 형상을 단순화시켜 사용하는 2차원 해석의 한계를 정량적으로 고찰하였다는데 의의가 있다.

스트럿 바의 구조 해석을 통한 피로 내구성에 관한 연구 (A Study on Fatigue Durability through the Structural Analysis of Strut Bar)

  • 한문식;조재웅
    • 한국자동차공학회논문집
    • /
    • 제24권5호
    • /
    • pp.504-511
    • /
    • 2016
  • This study investigates the durability of strut bar at car through structural and fatigue analyses. In this study, there are model 1 and model 2 as the analysis subjects. Model 1 is the existed one and model 2 is the improved one added with the reinforced part. Model 1 has the maximum equivalent stress of 165.11 MPa shown intensively at the welding part between the bracket and the bar. This stress is distributed over at the part of model 2 reinforced with this part. In case of fatigue analysis, there are three kinds of fatigue load as SAE bracket history, SAE transmission and sample history. The maximum fatigue life at SAE bracket history among three kinds of fatigue loads has the least value of $3.3693{\times}10^5$ cycles. The maximum fatigue life of model 2 becomes longer than that of model 1. As model 2 has the fatigue damage less than model 1, model 2 has the safety than model 1. As the fatigue durability about the configuration of strut bar is analyzed, it is thought to apply this study result into the real part effectively.

주조공정의 수치해석을 위한 3차원 전산모델 개발에 관한 연구 (A Study on the Development of a Three Dimensional Numerical Model for the Casting Processes)

  • 목진호;;이진호
    • 대한기계학회논문집B
    • /
    • 제26권10호
    • /
    • pp.1436-1444
    • /
    • 2002
  • A three dimensional numerical model was developed to analyze the mold filling and solidification processes straightforwardly in a casting processes. On the basis of the SIMPLER algorithm, the VOF method and the Equivalent Specific Heat method were adopted to deal with the free surface behavior and the latent heat evolution. The complete model has been validated using exact solutions and experimental results. The importance of three-dimensional effects has been highlighted by comparing the results from the three-dimensional analysis with those given by a two-dimensional analysis.

Round robin analysis to investigate sensitivity of analysis results to finite element elastic-plastic analysis variables for nuclear safety class 1 components under severe seismic load

  • Kim, Jun-Young;Lee, Jong Min;Park, Jun Geun;Kim, Jong-Sung;Cho, Min Ki;Ahn, Sang Won;Koo, Gyeong-Hoi;Lee, Bong Hee;Huh, Nam-Su;Kim, Yun-Jae;Kim, Jong-In;Nam, Il-Kwun
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.343-356
    • /
    • 2022
  • As a part of round robin analysis to develop a finite element elastic-plastic seismic analysis procedure for nuclear safety class 1 components, a series of parametric analyses was carried out on the simulated pressurizer surge line system model to investigate sensitivity of the analysis results to finite element analysis variables. The analysis on the surge line system model considered dynamic effect due to the seismic load corresponding to PGA 0.6 g and elastic-plastic material behavior based on the Chaboche combined hardening model. From the parametric analysis results, it was found that strains such as accumulated equivalent plastic strain and equivalent plastic strain are more sensitive to the analysis variables than von Mises effect stress. The parametric analysis results also identified that finite element density and ovalization option in the elbow elements have more significant effect on the analysis results than the other variables.

후판 용접부의 역학적 특성 -유한요소법에 의한 3차원 열탄소성 해석- (Study on the Mechanical Behavior of Welded part in thick Plate)

  • 방한서
    • Journal of Welding and Joining
    • /
    • 제10권4호
    • /
    • pp.250-258
    • /
    • 1992
  • In order to clarify the mechanical behavior of welding crack and to evaluate the mechanical characteristics of welded parts in thick plate, it is very important to accurately predict the welding deformation and residual stress including transient state before welding. In this paper, the theory of a three-dimensional elasto-plastic problem for the analysis of mechanical phenomenon of welding joint on the plate is developed into an efficient and accurate method based on the finite element method, and then several examples are considered by using the proposed model. The results of numerical analyses are discussed in the viewpoint of the mechanical characteristics of the distribution of three-dimensional welding residual stresses, plastic strains and their production mechanism on the thick plate.

  • PDF