• Title/Summary/Keyword: equivalent magnetic model

Search Result 151, Processing Time 0.036 seconds

Frequency-Domain Circuit Model and Analysis of Coupled Magnetic Resonance Systems

  • Huh, Jin;Lee, Wooyoung;Choi, Suyong;Cho, Gyuhyeong;Rim, Chuntaek
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.275-286
    • /
    • 2013
  • An explicit frequency-domain circuit model for the conventional coupled magnetic resonance system (CMRS) is newly proposed in this paper. Detail circuit parameters such as the leakage inductances, magnetizing inductances, turn-ratios, internal coil resistances, and source/load resistances are explicitly included in the model. Accurate overall system efficiency, DC gain, and key design parameters are deduced from the model in closed form equations, which were not available in previous works. It has been found that the CMRS can be simply described by an equivalent voltage source, resistances, and ideal transformers when it is resonated to a specified frequency in the steady state. It has been identified that the voltage gain of the CMRS was saturated to a specific value although the source side or the load side coils were strongly coupled. The phase differences between adjacent coils were ${\pi}/2$, which should be considered for the EMF cancellations. The analysis results were verified by simulations and experiments. A detailed circuit-parameter-based model was verified by experiments for 500 kHz by using a new experimental kit with a class-E inverter. The experiments showed a transfer of 1.38 W and a 40 % coil to coil efficiency.

A Study on the Permanent Magnet Overhang Effect in Permanent Magnetic Actuator Using 3D Equivalent Magnetic Circuit Network Method (3차원 등가자기회로망법을 이용한 영구자석형 액츄에이터의 영구자석 오버행 효과에 대한 연구)

  • Kwon, H.;Lim, S.Y.;Lee, J.;Kwon, S.Y.;Choi, S.G.;Baek, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.918-920
    • /
    • 2003
  • This paper presents the analysis of the permanent magnet overhang effect for permanent magnetic actuator. Generally, The overhang is often used to increase the force density in permanent magnet machineries. The overhang is especially profitable to reduce the volume after increasing the force density per volume when using the overhang effect of the permanent magnet. Therefore, 3D Equivalent Magnetic Circuit Network Method (3D EMCNM) has been used in this paper. According to the plunger position, flux distribution per the overhang length, and the holding force are quantitatively compared. Furthermore, an appropriate length of the overhang has been proposed. To confirm the accuracy of the analysis method, the results of 3D EMCNM and FEM(2D, 3D) are compared for the basic model.

  • PDF

Modeling of an Inductive Position Sensing System based on a Magnetic Circuit and its Analysis (자기 회로를 이용한 인덕턴스형 변위 측정 시스템의 모델링 및 해석)

  • Choi, Dong-June;Rim, Chun-Taek;Kim, Su-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.6
    • /
    • pp.93-101
    • /
    • 2001
  • This paper presents modeling of an inductive micro position sensing system and its analysis. The parameters affected the system response are excitation frequency, turn ratio, input position, air-gap size, load resistance, and geometric dimensions. To analyze the system, we try to establish a modeling based on an equivalent magnetic circuit with permeances. The model is verified by the experimental results from 1 kHz to 20 kHz. The magnetic circuit model is well fitted to the experimental data except a little error due to LC resonance in the large turn-ratio system. Modeling enables us to theoretically approach the response characteristics. Based on the magnetic circuit model, system parameters can be selected in such a way to obtain the required characteristics such as high sensitivity, good linearity, or small size.

  • PDF

FE Analysis of Hybrid Stepping Motor (HSM)

  • Jang Ki-Bong;Lee Ju
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.1
    • /
    • pp.39-42
    • /
    • 2005
  • Though full 3D analysis is the proper method to analyze the hybrid stepping motor (HSM), it has weak points in the areas of computation time and complexity. This paper introduces 2D FEA using a virtual magnetic barrier for the axial cross section to save computation time. For the purpose of 2D FEA, the virtual magnetic barrier and equivalent permanent magnet model of HSM are proposed. This result is compared with that of experimental and 3D analysis, considered as a reference result.

Analysis of Optical Pickup Actuator by 3-D EMCN method (3-D EMCN법을 이용한 광 픽업 액츄에이터의 해석)

  • Kim, Gin-A;Chung, Tea-Kyung;Choi, In-Ho;Hong, Sam-Yul
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.771-773
    • /
    • 2001
  • In this paper, three dimensional Equivalent Magnetic Circuit Method(3-D EMCN method) a numerical analysis method which supplements to magnetic equivalent circuit adding numerical technique, is proposed for analysis Optical Pickup Actuator. (3) This method provides better characteristics both in precision of the analysis and in computation time than other analysis method such as three-dimensional Finite Element Method. We choose the simple 2-magnet moving coil type pickup actuator model and verify upper yoke effect using this method.

  • PDF

Development of Characteristics Analysis Program (FEMCAD) for IPMSMs (매입형 영구자석 동기전동기 (IPMSMs) 특성해석 프로그램 (FEMCAD) 개발)

  • Kim, Young-Kyoun;Rhyu, Se-Hyun;Jung, In-Soung;Hur, Jin;Sung, Ha-Gyeong
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1035-1036
    • /
    • 2007
  • This paper presents the characteristics analysis of Interior Permanent Magnet Synchronous Motors(IPMSMs). The development of this program is based on Matlab. In oder to achieve the development of the program, basis algorithm for IPMSMs analysis took advantage of equivalent magnetic circuit analysis technique. The equivalent magnetic circuit analysis for IPMSMs are based on a rotate synchronous d-q reference frame. The mathematical model of the d-q frame voltage equations is used frequently for the analysis of IPMSMs. This program can consider a cross saturation effect and a iron loss and mechanical loss, and provide fast analysis results of IPMSMs characteristics.

  • PDF

Circuit Parameters and Characteristic Analysis of Condenser Run Single Phase Induction Motor by Combine Equivalent Circuit with Numerical Method (등가회로법과 수치해석의 결합에 의한 콘덴서 구동형 단상 유도전동기의 회로정수 산정 및 특성해석)

  • Kang, Gyu-Hong;Ha, Kyung-Ho;Hong, Jung-Pyo;Kim, Gyu-Tak;Jeong, Seung-Kyu
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.11
    • /
    • pp.720-728
    • /
    • 2000
  • This paper describes the calculation of the equivalent circuit parameters and the characteristic analysis of a capacitor-run type single-phase induction motor by means of the finite element method in coupled with the conventional equivalent circuit model. The circuit parameters of the stator are calculated form the lumped parameter and the slot leakage reactance of the rotor with the closed slot can be obtained by the use of slot pitch boundary condition. From the analysis result this combined equivalent circuit and finite element method which is used slot pitch boundary condition is compared with the experimental results, the validity of the method is proved.

  • PDF

Seismic analysis of AL2O3 nanoparticles-reinforced concrete plates based on sinusoidal shear deformation theory

  • Amoli, Abolfazl;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.285-294
    • /
    • 2018
  • In this study, nonlinear dynamic response of a concrete plate retrofit with Aluminium oxide ($Al_2O_3$) under seismic load and magnetic field is investigated. The plate is a composite reinforced by Aluminium oxide with characteristics of the equivalent composite being determined using Mori-Tanka model considering agglomeration effect. The plate is simulated with higher order shear deformation plate model. Employing nonlinear strains-displacements, stress-strain, the energy equations of column was obtained and using Hamilton's principal, the governing equations were derived. Differential quadrature method (DQM) in conjunction with Newark method is applied for obtaining the dynamic response of structure. The influences of magnetic field, volume percent of nanoparticles, geometrical parameters of column, agglomeration and boundary conditions on the dynamic response were investigated. Results showed that with increasing volume percent of nanoparticles, the dynamic deflection decreases.

Analysis and Design of Integrated Magnetic Circuit for Phase Shift Full Bridge Converter (위상천이 풀-브릿지 컨버터를 위한 Integrated Magnetic 회로 설계 및 해석)

  • Jang, Eun-Sung;Li, Xin-Lan;Shin, Yong-Whan;Heo, Tae-Won;Kim, Don-Sik;Lee, Hyo-Bum;Shin, Hwi-Beom
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.406-409
    • /
    • 2008
  • This paper presents the integrated magnetic circuit designing method for phase shift full bridge(PSFB) converter. The integrated magnetic circuit is implemented on redesigned of EI core. The transformer windings are located on center leg and the two inductors are located on the outer legs with air gap. Based on the equivalent circuit model, the principle of operation of the PSFB converter is explained. The operation and performance of the proposed circuit are verified on a 1.2 kW prototype converter. The analysis and design of the integrated magnetic circuit is verified through the experimental and simulation results.

  • PDF

A Study on Characteristics and Equivalent Circuit Model of Underwater Wireless Power Transfer System by Salinity (염도에 따른 수중 무선전력전송 시스템 특성 및 등가모델 연구)

  • Lee, Jeong-Geon;Kang, Wonshil;Ku, Hyunchul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.11
    • /
    • pp.851-856
    • /
    • 2018
  • In this study, we analyze the characteristics of wireless power transfer(WPT) based on magnetic resonance in an underwater environment and propose an equivalent model suitable for underwater WPT. The proposed underwater WPT equivalent model is constructed by expanding the free-space WPT T-model reflecting characteristics change according to media. Considering the water salinity, we propose a method to extract the parameters of the proposed model based on the S parameters. To verify the proposed model, a 6.78-MHz underwater WPT system was constructed and compared with the predicted power transfer efficiency of the model. As a result, it was confirmed that the proposed model predicts the variation of characteristics with an average error of less than 3 %.