• 제목/요약/키워드: equivalent load method

검색결과 565건 처리시간 0.025초

양방향 재하시험을 이용한 말뚝의 하중-변위곡선 추정방법 (Method of Estimating Pile Load-displacement Curve Using Bi-directional Load Test)

  • 권오성;최용규;권오균;김명모
    • 한국지반공학회논문집
    • /
    • 제22권4호
    • /
    • pp.11-19
    • /
    • 2006
  • 1990년대 이후로 양방향 재하시험(Bi-directional pile load test)은 기존 재하시험 방법에 대한 장점으로 인해 최근 여러 나라에서 그 사용이 증가하고 있다. 그러나 양방향재하시험은 두부재하시험과 상이한 재하기구를 따르므로 실제 구조물의 거동, 특히 말뚝 두부에서의 하중-변위 거동에 있어 실제와 다른 결과를 줄 우려가 있다. 따라서 본 논문에서는 동일한 형상과 지반조건을 갖는 두 본의 말뚝에 대해 한 본은 두부재하 방식으로, 한 본은 선단부 양방향 재하방식으로 정재하시험을 수행하였으며, 이 때 말뚝 깊이별로 변형률계를 부착하여 말뚝의 하중-전이 기구를 분석하였다. 변형률계 분석으로 구한 말뚝의 깊이별 하중 전이 함수의 모양은 시험방법에 따른 큰 차이를 보이지 않았으나, 양방향 재하시험을 이용하여 기존의 방법으로 추정한 말뚝두부 변위는 두부재하시험으로 구한 변위에 비해 사용하중하에서 1/2 미만인 것으로 나타났다. 양방향 재하시험 결과를 이용하여 보다 정확한 하중-변위곡선을 예측하기 위해 말뚝의 탄성압축량을 고려하는 간단한 방법을 제안하였다. 또한 양방향 재하시험시 변형률계 계측자료를 이용하여 두부재하시험 곡선과 거의 동일한 하중-변위 곡선을 예측할 수 있었다.

풍력발전시스템의 기계적 하중 데이터 분석 프로그램 개발과 시뮬레이션 데이터 적용 사례 (Development of Programs to Analyze Mechanical Load Data of Wind Turbine Generator Systems and Case Studies on Simulation Data)

  • 방제성;한정우;길계환
    • 대한기계학회논문집B
    • /
    • 제37권8호
    • /
    • pp.789-798
    • /
    • 2013
  • 형식인증시험을 통해 획득된 풍력발전기의 기계적 하중 데이터를 분석하기 위한 관련 프로그램 개발과 절차가 수행되었다. IEC 61400-13 규격을 기반으로 하는 측정 데이터에 대한 검증, 하중유형에 따른 분류, 시계열 및 통계 데이터 분석, 파워 스펙트럼 밀도함수 및 피로하중 스펙트럼 계산, 등가하중 계산 등의 절차가 본 프로그램을 통해 수행되었다. 수집된 데이터들이 피로하중을 산정하기에 충분한가를 판단하기 위해 정상전력생산의 경우에 대한 수집행렬을 구성하였다. 50 개의 하중 범위 분할 개수를 사용하는 우수집계법을 통해 피로하중 스펙트럼이 얻어지며, 사용된 재료에 따라 다르게 S-N 선도의 기울기를 적용하여 최종적으로 등가하중을 산출하였다. 모노파일 하부구조를 가지는 NREL 5MW 풍력발전기의 공탄성 시뮬레이션 데이터에 이용하여 위의 전반적인 절차를 수행하였다.

등가정하중을 이용한 유연다물체 동역학계의 구조최적설계 (Optimization of Flexible Multibody Dynamic Systems Using Equivalent Static Load Method)

  • 강병수;박경진
    • 대한기계학회논문집A
    • /
    • 제28권1호
    • /
    • pp.48-54
    • /
    • 2004
  • Generally, structural optimization is carried out based on external static loads. All forces have dynamic characteristics in the real world. Mathematical optimization with dynamic loads is extremely difficult in a large-scale problem due to the behaviors in the time domain. In practical applications, it is customary to transform the dynamic loads into static loads by dynamic factors, design codes, and etc. But the optimization results with the unreasonably transformed loads cannot give us good solutions. Recently, a systematic transformation has been proposed as an engineering algorithm. Equivalent static loads are made to generate the same displacement field as the one from dynamic loads at each time step of dynamic analysis. Thus, many load cases are used as the multiple loading conditions which are not costly to include in modem structural optimization. In this research, the proposed algorithm is applied to the optimization of flexible multibody dynamic systems. The equivalent static load is derived from the equations of motion of a flexible multibody dynamic system. A few examples that have been solved before are solved to be compared with the results from the proposed algorithm.

An iterative hybrid random-interval structural reliability analysis

  • Fang, Yongfeng;Xiong, Jianbin;Tee, Kong Fah
    • Earthquakes and Structures
    • /
    • 제7권6호
    • /
    • pp.1061-1070
    • /
    • 2014
  • An iterative hybrid structural dynamic reliability prediction model has been developed under multiple-time interval loads with and without consideration of stochastic structural strength degradation. Firstly, multiple-time interval loads have been substituted by the equivalent interval load. The equivalent interval load and structural strength are assumed as random variables. For structural reliability problem with random and interval variables, the interval variables can be converted to uniformly distributed random variables. Secondly, structural reliability with interval and stochastic variables is computed iteratively using the first order second moment method according to the stress-strength interference theory. Finally, the proposed method is verified by three examples which show that the method is practicable, rational and gives accurate prediction.

선박 이중판의 보강법 연구 (A Study on the Reinforced Method of Doubler Plate in Ship Hull Structure)

  • 함주혁
    • 한국해양공학회지
    • /
    • 제17권5호
    • /
    • pp.39-47
    • /
    • 2003
  • A study of the structural strength evaluation on the doubler plate, considering various load cases that were subjected to in-plane and out of plane combined load, has been performed through the systematic evaluation process. In order to estimate the proper static strength of doubler plate for various load cases, elasto-plastic large deflection analysis is introduced, including the contact effect between main plate and doubler. The characteristics of stiffness and strength variation are discussed, based on the results. In order to compare the doubler structure with the original strength of main plate, without doubler, simple formulas for the evaluation of the equivalent flat plate thickness are derived for each load case, respectively, based on the additional series of analysis of flat plate structure. Using these derived equations, the thickness change of an equivalent flat plate is analyzed according to the variation of various design parameters of doubler platesome design guides are suggested in order to maintain the original strength of main plate without doubler reinforcement. Finally, correlation between derived equivalent flat plate formula and the developed buckling strength formulas are discovered, and these relations are formulated for the future development of simple strength evaluation formula of general doubler plate structure.

등가하중을 이용한 원자로 핵연료봉 지지격자 스프링의 비선형 응답 구조 최적설계 (Nonlinear Response Structural Optimization of a Nuclear Fuel Rod Spacer Grid Spring Using the Equivalent Load)

  • 김도원;이현아;송기남;김용일;박경진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.694-699
    • /
    • 2007
  • The spacer grid set is a part of a nuclear fuel assembly. The set has a spring and the spring supports the fuel rods safely. Although material nonlinearity is involved in the deformation of the spring,nonlinearity has not been considered in design of the spring. Recently a nonlinear response structural optimization method has been developed using equivalent loads. It is called nonlinear response optimization equivalent loads (NROEL). In NROEL, the external loads are teansformed to the equivalent loads (EL) for linear static analysis and linear response optimization is carried out based on the EL in a cyclic manner until the convergence criteria are satisfied. EL is the load set which generates the same response no EL. The objective function is defined by minimizing the maximum stress in the spring while is limited and the support force of the spring is larger than a certain value. The results are verified by nonlinear. ABAQUS is used for nonlinear response analysis and GENESIS is employed for linear response optimization.

  • PDF

등가회로법에 의한 커패시터 구동 단상 유도전동기의 특성해석 (Characteristic Analysis of Capacitor Run Single-Phase Induction Motor by Equivalent Circuit Method)

  • 좌종근;김호민;김도진
    • 전기학회논문지P
    • /
    • 제60권4호
    • /
    • pp.220-226
    • /
    • 2011
  • This paper proposes a straightforward method of analyzing the operation characteristics for the capacitor run single-phase induction motor from the traditional equivalent circuit based on the revolving field theory. The proposed method consists of five procedures as follows: mechanical loss segregation, iron loss segregation and calculation of the equivalent circuit parameters, recalculation of parameters of the main winding side, calculation of the auxiliary winding magnetizing reactance and effective turn ratio, and analyzing the operation characteristics for this motor. When the characteristics are analyzed, the segregated mechanical and iron losses are considered as a loss resistance across input terminals of the equivalent circuit for the analysis. The validity of the proposed method is verified from the comparison between the computed results and the experimental ones for the operation characteristics.

고유변형도 기반 등가하중법에 의한 보강판의 가열 교정 해석 (Analysis of Correction of Welding Deformation of Stiffened Plate by Heating Using Equivalent Loading Method based on Inherent Strain)

  • 송하철;류현수;장창두
    • 대한조선학회논문집
    • /
    • 제41권4호
    • /
    • pp.85-91
    • /
    • 2004
  • The objective of the present paper is to develop an analysis method for the correction of welding deformation of stiffened plate by line heating. In this paper, the equivalent loading method, based on the inherent strain theory, was used to analyze the heat-straightening of a stiffened plate. Equivalent loads were obtained by integrating the inherent strains which were determined from the highest temperature and the degree of restraint. Finally, the obtained equivalent loads were imposed, as applied loads, on the elastic analysis for the prediction of correction of welding deformation in stiffened plate. The proposed method is expected as a basic study in heat-straightening analysis of welding deformation in large scale block.

Fatigue property analysis of U rib-to-crossbeam connections under heavy traffic vehicle load considering in-plane shear stress

  • Yang, Haibo;Qian, Hongliang;Wang, Ping
    • Steel and Composite Structures
    • /
    • 제38권3호
    • /
    • pp.271-280
    • /
    • 2021
  • In this study, the fatigue property of U rib-to-crossbeam connections in orthotropic steel bridge (OSB) crossbeams under heavy traffic vehicle load was investigated considering the effects of in-plane shear stress. The applicability of an improved structural stress (ISS) method was validated for the fatigue behavior analysis of nonwelded arc-shaped cutout regions in multiaxial stress states. Various types of fatigue testing specimens were compared for investigating the equivalent structural stress, fatigue crack initiation positions, and failure modes with the unified standards. Furthermore, the implications of OSB crossbeams and specified loading cases are discussed with respect to the improved method. The ISS method is proven to be applicable for analyzing the fatigue property of nonwelded arc-shaped cutout regions in OSB crossbeams. The used method is essential for gaining a reliable prediction of the most likely failure modes under a specific heavy traffic vehicle load. The evaluated results using the used method are proven to be accurate with a slighter standard deviation. We obtained the trend of equivalent structural stress in arc-shaped cutout regions and validated the crack initiation positions and propagation directions by comparing them with the fatigue testing results. The implications of crossbeam spans on fatigue property are less significant than the effects of crossbeams.

고유변형률 기반 등가하중법을 이용한 판의 용접변형 해석 (Welding Deformation Analysis of Plates Using the Inherent Strain-based Equivalent Load Method)

  • 이주성
    • Journal of Welding and Joining
    • /
    • 제28권2호
    • /
    • pp.39-46
    • /
    • 2010
  • IIn this study, used is the equivalent loading method based on the inherent strain to predict the welding deformation of panel members. Equivalent loads are computed from the inherent strain distribution around weld line, and then applied for the linear finite element analysis. Thermal deformation of panel members can be, of course, carried out through the rigorous thermal elasto-plastic analysis procedure but it is not practical in applying to predicting the welding deformation of large structures such as blocks found in a ship structure from view of computing time. The present equivalent load approach has been applied to flat plate model to verify the present approach, and to several curved plate models having the curvature in the welding direction to investigate the effect of the longitudinal curvature upon the weld-induced deformation. The results are compared with those by thermal elasto-plastic analysis. As far as the present results are concerned, it can be said that the present approach shows good agreement with the results by welding experiment and the rigorous thermal elasto-plastic analysis. The present approach has been also applied to predict the welding deformation of panel block as for application illustration to practical model.