• Title/Summary/Keyword: equivalent fatigue load model

Search Result 41, Processing Time 0.035 seconds

Study on Convergence Technique through Strength Analysis of Stabilizer Link by Type (스테빌라이저 링크의 종류별 강도 해석을 통한 융합 기술연구)

  • Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.1
    • /
    • pp.57-63
    • /
    • 2015
  • In this study, the lower arm is connected and fixed at the model of the automotive stabilizer link as the moment is applied. There are models of 1, 2 and 3 as a length control type, a general type and a single body type respectively. These models are investigated by performing the convergence technique through the design and the strength analysis with CATIA and ANSYS. As the maximum equivalent stress of model 3 has the least, model 3 can endure the highest load among three models. As the fatigue analysis, model 3 has the minimum blocks as the frequency of stress state, model 3 becomes also safest among three models. As models of 1, 2 are in the order of the next safety, the number of blocks becomes larger as the frequency of stress state and the instability becomes higher. And it is possible to be grafted onto the convergence technique at design and show the esthetic sense.

Planet Bearing Design of Slewing Planetary Gearbox (선회용 유성 기어박스의 유성기어 베어링 설계)

  • Park, Young-Jun;Lee, Geun-Ho;Song, Jin-Seop;Nam, Yong-Yun;Park, Sung-Ha
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.316-323
    • /
    • 2012
  • In order to meet the service life of planetary gearbox, a planet bearing, well known as the component with the highest failure rate, is designed. To predict the bearing fatigue life, ISO standard(ISO/TS 16281) is used, and the design parameters of the bearing are optimized using a parametric method. The whole planetary gearbox model is developed using a commercial software to calculate loads acting on planet bearings accurately. The results state that the designed bearings are satisfied with the life of 15,000hours, and the bearings that consist of 22rollers of 58mm have 1.6times longer life and better load sharing relatively than 22rollers of 28.5mm. Also, the increase in preload of taper roller bearings on the output pinion shaft prolongs the life of planet bearings regardless of roller's length.

An Assessment Study for Design Load of a Small Wind Turbine (소형풍력발전기의 설계하중 평가 연구)

  • Hyun, Seung-Gun;Kim, Keon-Hoon;Huh, Jong-Chul
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.48-53
    • /
    • 2011
  • In this study, it is to verify the applicability for a simplified model(IEC61400-2, Design Require-ments for Small Wind Turbines, 2006-03) is the international standard is used to the structural design. In the design process of a wind turbine, the safety of a designed wind turbine is one of the most important factors. The simplified model can be used to determine the design load for small wind turbines. So, this paper has been re-evaluated a small wind turbine design loads that produced already. As a result, the material characteristic value(Rchar) of Blade, Rotor shaft and the tower are $90E6[N/m^2]$, $441E6[N/m^2]$ and $94E6[N/m^2]$. Therefore, the value of the applied safety factor to each part of the survival probability of 95% are satisfied.

  • PDF

A Study on the Fatigue Strength Evaluation for Fillet Weldment including Stress Singularity using Structural Stress with Virtual Node Method (응력 특이점을 갖는 필릿 용접구조물의 피로해석을 위한 가상절점법을 이용한 구조응력 계산 기법 고찰)

  • Ha Chung-In;Kang Sung-Won;Kim Myung-Hyun;Kim Man-Soo;Sohn Sang-Yong;Heo Joo-Ho
    • Journal of Welding and Joining
    • /
    • v.24 no.3
    • /
    • pp.27-33
    • /
    • 2006
  • Structural stress approach is well known as a mesh-size insensitive fatigue assessment method by using finite element analyses. It is, however, difficult to estimate the structural stress (SS) at weld end points due to stress singularities when shell elements are used. In this study, fatigue evaluations with longitudinal load carrying box fillet weldment under out-of-plane bending load have been performed by using virtual node method (VNM) in order to avoid the problem, which is called the weld end effect. Various combinations of virtual node parameters, such as reference point and virtual node locations, are investigated for the estimation of proper structural stress values applying VNM in a systematic manner. The appropriate guidance of virtual node parameter has been offered for the fillet weldment considered in the study. The structural stress values obtained by VNM have also been validated by comparing the result with finite element model including weld bead. Moreover, the fatigue strength of the fillet weldment based on the equivalent structural stress is shown to be consistent with the master S-N curve.

Combustion Instability of Gas Turbine with Segmented Dynamic Thermo-Acoustic Model under Load Follow-Up (이산형 열-음향 모델을 이용한 부하 변동시 가스터빈 연소 불안정 특성)

  • JEONG, JIWOONG;HAN, JAEYOUNG;JEONG, JINHEE;YU, SANGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.538-548
    • /
    • 2018
  • The thermo-acoustic instability in the combustion process of a gas turbine is caused by the interaction of the heat release mechanism and the pressure perturbation. These acoustic vibrations cause fatigue failure of the combustor and decrease the combustion efficiency. This study is to develop a segmented dynamic thermo-acoustic model to understand combustion instability of gas turbine. Therefore, this study required a dynamic analysis rather than static analysis, and developed a segmented model that can analyze the performance of the system over time using the Matlab/Simulink. The developed model can confirm the thermo-acoustic combustion instability and exhaust gas concentration in the combustion chamber according to the equivalent ratio change, and confirm the thermo-acoustic combustion instability for the inlet temperature and the load changes. As a result, segmented dynamic thermo-acoustic model has been developed to analyze combustion instability under the operating condition.

Out-of-plane ductile failure of notch: Evaluation of Equivalent Material Concept

  • Torabi, A.R.;Saboori, Behnam;Kamjoo, M.R.
    • Structural Engineering and Mechanics
    • /
    • v.75 no.5
    • /
    • pp.559-569
    • /
    • 2020
  • In the present study, the fracture toughness of U-shaped notches made of aluminum alloy Al7075-T6 under combined tension/out-of-plane shear loading conditions (mixed mode I/III) is studied by theoretical and experimental methods. In the experimental part, U-notched test samples are loaded using a previously developed fixture under mixed mode I/III loading and their load-carrying capacity (LCC) is measured. Then, due to the presence of considerable plasticity in the notch vicinity at crack initiation instance, using the Equivalent Material Concept (EMC) and with the help of the point stress (PS) and mean stress (MS) brittle failure criteria, the LCC of the tested samples is predicted theoretically. The EMC equates a ductile material with a virtual brittle material in order to avoid performing elastic-plastic analysis. Because of the very good match between the EMC-PS and EMC-MS combined criteria with the experimental results, the use of the combination of the criteria with EMC is recommended for designing U-notched aluminum plates in engineering structures. Meanwhile, because of nearly the same accuracy of the two criteria and the simplicity of the PS criterion relations, the use of EMC-PS failure model in design of notched Al7075-T6 components is superior to the EMC-MS criterion.

Consideration of the Structural Response of High Speed Aluminum Planning Boat Stiffened Plate Member subjected to the Simplified Equivalent Dynamic Design Pressure (동하중 등가 설계압을 받는 고속 경구조선 알루미늄 보강판부재의 구조응답 고찰)

  • HAM JUH-HYEOK;KANG BYUNG-YOON;CHOO KYUNG-HOON
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.408-413
    • /
    • 2004
  • High speed planning boats also have been required more and more the rational strength analysis and evaluation for the optimal structural design in respect of the structural lightness according to the high speed trend. Even though the suggestion of the simple type equation for the equivalent dynamic pressure is reasonable to design the scantling of ship structure conveniently, many research activities for more reasonable improvement of the simple design pressure, have been continued to suggest the more accurate equivalent static description of tire structural response such as the deflection and stress of hull structure. In this research, we focus on the aluminum bottom stiffened plate structure in which structural scantling is mainly depend on the local loads such as dynamic or impact pressure without other load effects and structural response for the simple dynamic equivalent pressure was investigated through the structural analysis. In order to investigate the structural response of the bottom stiffened plate structure subjected to the dynamic equivalent design pressure, linear and nonlinear structural analysis of the bottom stiffened plate structure of 4.3 ton aluminum planning boat was performed based on the equivalent static applied loads which were derived from the KR regulation and representative one among various dynamic equivalent pressure equations. From above analysis results, we found that the response such as deflection and stress of plate member was similar with the response results of one plate member model with fixed boundary, which was published previous paper and in case of KR design loading, all response of stiffened plate structure were within elastic limit. Through the nonlinear analysis, nearly elastic behavior including the slight geometrical nonlinear response was dominant but plastic local zone was appeared at $85\%$ limit load. Therefore, we can say that through tire linear and nonlinear analysis, this stiffened plate member has no structural strength problem based on the yield criteria in case within $60\%$ limit load except the other strength point of view such as the fatigue and buckling problem.

  • PDF

A Study on Vehicle-based Durability Evaluation for Weight-reduced Valve Parts of the Dual Clutch Transmission

  • ChanEun Kim;TaeWook Kim
    • Tribology and Lubricants
    • /
    • v.40 no.1
    • /
    • pp.24-27
    • /
    • 2024
  • A monotype valve body for a dual clutch transmission has the potential to reduce costs, weight, and manufacturing time by modularizing various parts, including those of existing solenoid packs and valve bodies, into one through the application of super-precision die casting technology. However, this approach may lead to challenges such as reduced rigidity and increased interference due to modularization and compactness, impacting both product performance due to the reduced weight as well as durability and reliability. Unlike existing products, this approach requires a high-precision thin-wall block to avoid more complicated flow line formation, interference between flow lines, and leaks, as well as a strict quality requirement standard and precise inspections including detection of internal defects. To conduct precise inspections, we built an equivalent model corresponding to a driving distance of 300,000 km. Testing involved simulating actual road loads using a real vehicle and a chassis dynamometer in the FTP-75 mode (EPA Federal Test Procedure). The aim of the study was to establish a vehicle load-based part durability model for manufacturing a mono-type valve body and to develop fundamental technology for part weight reduction through preliminary design by introducing analytical weight reduction technology based on the derived results.

Study of Wind Farm Model Configuration for WFMS simulation (WFMS 모의를 위한 풍력발전단지 모델 구성 연구)

  • Kim, Hyunwook;Jung, Seungmin;Hwang, Pyeong-Ik;Yoo, Yeuntae;Song, Sungyoon;Jang, Gilsoo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.247-248
    • /
    • 2015
  • Wind turbines causes instabilities on the grid as their penetration increase. To mitigate harmful effects from wind turbines, transmission system operator(TSO) set up some requirements to obligate for wind generation operator for grid connection. So wind farm management system(WFMS) has important role to follow requirement from TSO, WFMS calculates available real power by considering wake effects, and dispatches real power order to each wind turbine in wind farm to optimize for decreasing load fatigue. To verify operation of WFMS, real-time simulator(RTS) is necessary. This paper deals with RTS configuration to verify WFMS operation. RTS includes wind farm model and power flow code. Normally, wind farm equivalent simple model makes wind turbines in wind farm to one wind turbine mode which cannot verify power flow in wind farm and WFMS operation. Thus, this paper makes wind farm model using simple wind turbine model with transfer function. Matlab is used for make power flow code and wind farm model to impose RTS and those model is certified by PSCAD/EMTDC.

  • PDF

Accelerated Life Evaluation of Drive Shaft Using Vehicle Load Spectrum Modeling (차량 부하 스펙트럼 모델링을 이용한 구동축의 가속 수명 평가)

  • Kim, Do Sik;Lee, Geun Ho;Kang, E-Sok
    • Transactions of the KSME C: Technology and Education
    • /
    • v.5 no.2
    • /
    • pp.115-126
    • /
    • 2017
  • This paper proposes an accelerated life evaluation of drive shaft for the power train parts of special purpose vehicle. It is necessary the real load data of usage level driving load condition for life evaluation of power train parts, but we can't get the load spectrum data for evaluation in many case of special purpose vehicle. So, in this paper, the road load spectrum data for evaluation is created by modeling and simulation based on vehicle data and special road condition. The inverse power model is used for accelerated life test. The equivalent torque of load spectrum is achieved using the Miner's Rule. This paper also proposes the calibrated acceleration life test method for drive shaft. The fatigue test is performed through three stress levels. The lifetime at normal stress level is predicted by extrapolation, and is verified through comparison of experimental results and load spectrum data.