• Title/Summary/Keyword: equivalent damping ratio

Search Result 148, Processing Time 0.02 seconds

Modified Equivalent Radius Approach for Soil Damping Measurement in Torsional Testing

  • Bae, Yoon-Shin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.39-43
    • /
    • 2008
  • Determination of strain associated with shear modulus and damping ratio during torsional test is complicated. This is due to nonuniform stress-strain variation occurring linearly with radius in a soil specimen in torsion. A conventional equivalent radius approach proposed by Chen and Stokoe appears to be adequate for evaluating strain associated with shear modulus at low to intermediate strain levels. This approach is less accurate for damping measurement, particularly at high strain. Modified equivalent radius approach was used to account for the nonuniform stress-strain effect more precisely. The modified equivalent radius approach was applied for hyperbolic, modified hyperbolic, and Ramberg-Osgood models. The results illustrate the usefulness of the modified equivalent radius approach and suggest that using a single value of equivalent radius ratio to calculate strains is not appropriate.

Seismic responses of base-isolated buildings: efficacy of equivalent linear modeling under near-fault earthquakes

  • Alhan, Cenk;Ozgur, Murat
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1439-1461
    • /
    • 2015
  • Design criteria, modeling rules, and analysis principles of seismic isolation systems have already found place in important building codes and standards such as the Uniform Building Code and ASCE/SEI 7-05. Although real behaviors of isolation systems composed of high damping or lead rubber bearings are nonlinear, equivalent linear models can be obtained using effective stiffness and damping which makes use of linear seismic analysis methods for seismic-isolated buildings possible. However, equivalent linear modeling and analysis may lead to errors in seismic response terms of multi-story buildings and thus need to be assessed comprehensively. This study investigates the accuracy of equivalent linear modeling via numerical experiments conducted on generic five-story three dimensional seismic-isolated buildings. A wide range of nonlinear isolation systems with different characteristics and their equivalent linear counterparts are subjected to historical earthquakes and isolation system displacements, top floor accelerations, story drifts, base shears, and torsional base moments are compared. Relations between the accuracy of the estimates of peak structural responses from equivalent linear models and typical characteristics of nonlinear isolation systems including effective period, rigid-body mode period, effective viscous damping ratio, and post-yield to pre-yield stiffness ratio are established. Influence of biaxial interaction and plan eccentricity are also examined.

Analytical and numerical algorithm for exploring dynamic response of non-classically damped hybrid structures

  • Raheem, Shehata E. Abdel
    • Coupled systems mechanics
    • /
    • v.3 no.2
    • /
    • pp.171-193
    • /
    • 2014
  • The dynamic characterization is important in making accurate predictions of the seismic response of the hybrid structures dominated by different damping mechanisms. Different damping characteristics arise from the construction of hybrid structure with different materials: steel for the upper part; reinforced concrete for the lower main part and interaction with supporting soil. The process of modeling damping matrices and experimental verification is challenging because damping cannot be determined via static tests as can mass and stiffness. The assumption of classical damping is not appropriate if the system to be analyzed consists of two or more parts with significantly different levels of damping. The dynamic response of structures is critically determined by the damping mechanisms, and its value is very important for the design and analysis of vibrating structures. A numerical algorithm capable of evaluating the equivalent modal damping ratio from structural components is desirable for improving seismic design. Two approaches are considered to explore the dynamic response of hybrid tower of cable-stayed bridges: The first approach makes use of a simplified model of 2 coupled lumped masses to investigate the effects of subsystems different damping, mass ratio, frequency ratio on dynamic characteristics and equivalent modal damping; the second approach employs a detailed numerical step-by step integration procedure.

Probability-based prediction of residual displacement for SDOF using nonlinear static analysis

  • Feng, Zhibin;Gong, Jinxin
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.571-584
    • /
    • 2022
  • The residual displacement ratio (RDRs) response spectra have been generally used as an important means to evaluate the post-earthquake repairability, and the ratios of residual to maximum inelastic displacement are considered to be more appropriate for development of the spectra. This methodology, however, assumes that the expected residual displacement can be computed as the product of the RDRs and maximum inelastic displacement, without considering the correlation between these two variables, which inevitably introduces potential systematic error. For providing an adequately accurate estimate of residual displacement, while accounting for the collapse resistance performance prior to the repairability evaluation, a probability-based procedure to estimate the residual displacement demands using the nonlinear static analysis (NSA) is developed for single-degree-of-freedom (SDOF) systems. To this end, the energy-based equivalent damping ratio used for NSA is revised to obtain the maximum displacement coincident with the nonlinear time history analysis (NTHA) results in the mean sense. Then, the possible systematic error resulted from RDRs spectra methodology is examined based on the NTHA results of SDOF systems. Finally, the statistical relation between the residual displacement and the NSA-based maximum displacement is established. The results indicate that the energy-based equivalent damping ratio will underestimate the damping for short period ranges, and overestimate the damping for longer period ranges. The RDRs spectra methodology generally leads to the results being non-conservative, depending on post-yield stiffness. The proposed approach emphasizes that the repairability evaluation should be based on the premise of no collapse, which matches with the current performance-based seismic assessment procedure.

Determination of Damping Modification Factor in RC Structures Due to Energy Absorption Efficiency (에너지 흡수효율에 의한 철근콘크리트 구조물의 감쇠비 수정계수 결정)

  • 김장훈;좌동훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.161-166
    • /
    • 2002
  • The modification factor( k-factor) of equivalent damping ratio utilized in the current state-of-the-practice to account for the imperfection of reinforced concrete structures in hysteresis loop is investigated. From this, it is found that the current modification factor does not include the effect of cyclic loading, one of the important characteristic properties of earthquake loading. This could be taken into account by considering the energy absorption efficiency based on the cummulative plastic deformation. From the study, it is suggested that the current approach for the modification factor for the equivalent damping ratio should be reformed.

  • PDF

Equivalent damping of a structure with vibration control devices subjected to wind loads

  • Hwang, Jae-Seung;Kim, Jinkoo;Lee, Sang-Hyun;Min, Kyung-Won
    • Wind and Structures
    • /
    • v.6 no.4
    • /
    • pp.249-262
    • /
    • 2003
  • The purpose of this study is to propose a procedure for evaluating quantitatively the increase of the equivalent damping ratio of a structure with passive/active vibration control systems subjected to a stationary wind load. A Lyapunov function governing the response of a structure and its differential equation are formulated first. Then the state-space equation of the structure coupled with the secondary damping system is solved. The results are substituted into the differential equation of the Lyapunov function and its derivative. The equivalent damping ratios are obtained from the Lyapunov function of the combined system and its derivative, and are used to assess the control effect of various damping devices quantitatively. The accuracy of the proposed procedure is confirmed by applying it to a structure with nonlinear as well as linear passive/active control systems.

General Method of Equivalent Damping Ratio Evaluation of a Structure equipped with Response Dampers (응답감쇠장치가 설치된 구조물의 등가감쇠비산정에 관한 일반적인 방법)

  • 민경원;이영철;이상현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.109-114
    • /
    • 2002
  • The purpose of this study is to propose the general method for evaluating the equivalent damping ratios of a structure with supplemental response control dampers. We define Lyapunov function of which derivative can be expressed in autoregressive form and evaluate the equivalent damping ratios by using Lyapunov function and its derivative. This Lyapunov function may be called as generalized structural energy. In this study, it is assumed that the response of a structure is stationary random process and control dampers do not affect the modal shapes of a structure, and the structure has proportional damping. Proposed method can be used to get the equivalent damping ratios of a structure with non-linear control dampers such as friction dampers as well as linear control dampers. To show the effectiveness of the proposed method. we evaluate the equivalent damping ratios of a structure with viscous dampers. AMDs. and friction dampers. The equivalent damping ratios from proposed method are compared to those from eigenvalue analysis for linear control dampers. and those from time history analysis for non-linear control dampers. respectively.

  • PDF

An Experimental Study for the Shear Property Dependency of High Damping Rubber Bearings (고감쇠 고무받침의 전단특성 의존성에 대한 실험적 연구)

  • Oh, Ju;Jung, Hie-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.121-129
    • /
    • 2010
  • In this paper, the characteristics of high damping rubber bearing were studied through various prototype test. The characteristics of HDRB were dependent on displacements, repeated cycles, frequencies, vertical pressure, temperature, the capability of shear deformation and the vertical stiffness. The prototype test showed that the displacement was the most governing factor influencing on characteristics of HDRB. The effective stiffness and equivalent damping of HDRB were decreased with displacement, and increased with frequency. The effective stiffness was decreased with high vertical pressure, while the equivalent damping was increased. In which, the equivalent damping was more dependent on the vertical pressure than the effective stiffness. According to the results of this study, more careful examination is required to design the effective stiffness and equivalent damping ratio considering the dependencies of design displacement and exciting velocity.

Equivalent period and damping of SDOF systems for spectral response of the Japanese highway bridges code

  • Sanchez-Flores, Fernando;Igarashi, Akira
    • Earthquakes and Structures
    • /
    • v.2 no.4
    • /
    • pp.377-396
    • /
    • 2011
  • In seismic design and structural assessment using the displacement-based approach, real structures are simplified into equivalent single-degree-of-freedom systems with equivalent properties, namely period and damping. In this work, equations for the optimal pair of equivalent properties are derived using statistical procedures on equivalent linearization and defined in terms of the ductility ratio and initial period of vibration. The modified Clough hysteretic model and 30 artificial accelerograms, compatible with the acceleration spectra for firm and soft soils, defined by the Japanese Design Specifications for Highway Bridges are used in the analysis. The results obtained with the proposed equations are verified and their limitations are discussed.

Verification of Modified Equivalent Linear Analysis Through Case Study (수정된 등가선형 해석 기법의 사례를 통한 검증)

  • Jeong, Chang-Gyun;Kwak, Dong-Yeop;Park, Du-Hee
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.273-276
    • /
    • 2008
  • Equivalent linear method indirectly reflects a variation of shear modulus(G/Gmax) and damping ratio $(\xi)$ by selects mean value of every response analysis. Existing equivalent linear method does not properly consider variation of shear strain along frequencies and uses mean value. Real dynamic soil behavior is affected by shear stiffness and damping ratio. Modified equivalent linear method is developed to consider variation. Modified equivalent linear method can reflects high strain at low frequency and low strain at high frequency by using an easement curve. This study presents propriety of method by case study.

  • PDF