• Title/Summary/Keyword: equivalent damping method

Search Result 175, Processing Time 0.026 seconds

Nonlinear Forced Torsional Vibration for the Engine Shafting System With Viscous Damper (점성댐퍼를 갖는 엔진 축계의 비선형 비틀림강제진동)

  • Park, Y.N;Song, S.O;Kim, U.K;Jeon, H.J
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.372-372
    • /
    • 1996
  • The torsional vibration of the propulsion shafting system equipped with viscous damper is investigated. The equivalent system is modeled by a two mass softening system with Duffing's oscillator and the vibratory motion is described by non-linear differential equations of second order. The damper casing is fixed at the front-end of crankshaft and the damper's inertia ring floats in viscous silicon fluid inside of the camper casing. The excitation frenquency is proportional to the rotational speed of engine. The steady state response of the equivalent system is analyzed by the computer and for this analyzing, the harmonic balance method is adopted as a non-linear vibration analysis technique. Frequency response curves are obtained for 1st order resonance only. Jump phenomena are explained. The discriminant for the solutions of the steady state response is derived. Both theoretical and measured results of the propulsion shafting system are compared with and evaluated. As a result of comparisions with both data, it was confirmed that Duffing's oscillator can be used in the modeling of the propulsion shafting system attached with viscous damper with non-linear stiffness.

Study on Discomfort of Vertical Whole-body Shock Vibration Having Various Magnitudes, Frequencies and Damping (다양한 크기와 주파수 그리고 감쇠를 갖는 상하방향 전신 충격진동에 대한 불편함 연구)

  • Ahn, Se-Jin;Griffin, Michael J.;Yoo, Wan-Suk;Jeong, Weui-Bong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.50-57
    • /
    • 2007
  • Shocks are excited by impulsive forces and cause discomfort in vehicles. Current standards define means of evaluating shocks and predicting their discomfort, but the methods are based on research with a restricted range of shocks. This experimental study was designed to investigate the discomfort of seated subjects exposed to a wide range of vertical shocks. Shocks were produced from the responses of one degree-of-freedom models, with 16 natural frequencies (from 0.5 to 16 Hz) and four damping ratios (0.05 0.1, 0.2 and 0.4), to a hanning-windowed half-sine force inputs. Each type of shock was presented at five vibration dose values in the range $0.35\;ms^{-1.75}$ to $2.89\;ms^{-1.75}$. Fifteen subjects used magnitude estimation method to judge the discomfort of all shocks. The exponent in Stevens' power law, indicating the rate of growth in discomfort with shock magnitude, decreased with increasing fundamental frequency of the shocks. At all magnitudes, the equivalent comfort contours showed greatest sensitivity to shocks having fundamental frequencies in the range 4 to 12.5 Hz. At low magnitudes the variations in discomfort with the shock fundamental frequency were similar to the frequency weighting $W_b$ in BS 6841, but low frequency high magnitudes shocks produced greater discomfort than predicted by this weighting. At some frequencies, for the same unweighted vibration dose value, there were small but significant differences in discomfort caused by shocks having different damping ratios. The rate of increase in discomfort with increasing shock magnitude depends on the fundamental frequency of the shock. In consequence, the frequency-dependence of discomfort produced by vertical shocks depends on shock magnitude. For shocks of low and moderate discomfort, the current methods seem reasonable, but the response to higher magnitude shocks needs further investigation.

Simulation Model for Dynamic Performance Analysis of UPFC (UPFC의 동적 성능해석을 위한 시뮬레이션 모형)

  • Han, Byung-Moon;Choi, Dae-Gil;Shin, Ik-Shang
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.479-481
    • /
    • 1996
  • This paper describes a simulation model to analyze the dynamic performance of Unified Power Flow Controller which ran flexibly adjust the active and reactive power flow through the ac transmission line. An equivalent circuit to analyze the basic principle for the whole system operation was developed and a control system for the Unified Power Flow Controller was derived using vector control method. A computer simulation model with EMTP code was also conceived to evaluate the performance of the Unified power Flow Controller. The simulation results show that Unified Power flow Controller is very effective for controlling the power flow and damping the subsynchronous resonance in the power system.

  • PDF

Seismic Design of Structures with Knee Braces (knee brace가 설치된 구조물의 내진설계)

  • 김진구;서영일
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.274-281
    • /
    • 2002
  • In this study a analytical model for a structure with buckling-restrained unbonded knee-braces is proposed, and a performance-based seismic design procedure for such a system Is provided. The proposed structure system has advantage of simplifying the structural design procedure in that the hinge-connected main structural members, such as beams and columns, are designed only for gravity loads, and all the lateral seismic load is resisted by the braces. The design procedure is based on the concept of equivalent damping, and is implemented to the capacity spectrum method. Parametric study is performed with design variables such as yield stress and cross-sectional area of knee-braces to find out proper slope of the braces.

  • PDF

Vibration Isolation System for Driver's Seats with Negative Stiffness (운전자용 의자의 부강성 진동 절연 시스템)

  • Park, Sung-Tae;Lee, Sang-Joo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.114-121
    • /
    • 2010
  • As a vehicle speed increases, more vibration energy is transmitted from chassis to a driver. Current isolation system for the driver's seat by damping control can reduce the transmitted vibration energy near resonance area. But in higher frequency region than natural frequency multiplied by $\sqrt{2}$, the vibration energy transmitted to the driver has a tendency to be increased. Therefore, the method by natural frequency reduction of the system is preferred to increase the effectiveness of the anti-vibration. However, the natural frequency could not be freely reduced due to the nature of the isolation system structure. A new passive suspension system to reduce the natural frequency is proposed. The theoretical analysis and experimental results show better vibration attenuation compared with the current isolation system.

A Study on Structure and Vibration Analysis of an Air Suspension Seat (에어 서스펜션 시트의 구조 및 진동해석에 관한 연구)

  • Ha, Jung-Soo;Lee, Gun-Myung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.47-54
    • /
    • 2017
  • This study analyzed air suspension seat frame structure and vibration for 50 - 180 kg mass driver to obtain optimum seat design parameter values for the equivalent spring constant and damping coefficient. Various air suspension seat frames were designed following WTS-003 and KS B 6839 standards, and then evaluated using finite elements analysis. Resonance and vibration tests were performed according to the 78/764/EEC standard.

A Study on the Optimal Parameter Selection of a Power System Stabilizer by Field Tests (현장 시험에 의한 편력계통 안정화장치의 적정 파라메타 설정에 관한 연구)

  • 김경철;임익헌
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.3
    • /
    • pp.83-90
    • /
    • 2001
  • This paper resents an algorithm for the optimal parameter selection of a power system stabilizer in a single machine-infinite bus system through the external equivalent transmission line. This method is one of the classical techniques by changing the PSS gain to allocate properly pole-zero positions. All the PSS parameters are obtained by solving a set of algebraic equations for the system constants depend on a variety of machine loadings and system external impedances, the natural oscillation modes, and the damping characteristics. And this algorithm was written in a simple software program using MATLAB.

  • PDF

Stability behavior of the transmission line system under incremental dynamic wind load

  • Sarmasti, Hadi;Abedi, Karim;Chenaghlou, Mohammad Reza
    • Wind and Structures
    • /
    • v.31 no.6
    • /
    • pp.509-522
    • /
    • 2020
  • Wind load is the principal cause for a large number of the collapse of transmission lines around the world. The transmission line is traditionally designed for wind load according to a linear equivalent method, in which dynamic effects of wind are not appropriately included. Therefore, in the present study, incremental dynamic analysis is utilized to investigate the stability behavior of a 400 kV transmission line under wind load. In that case, the effects of vibration of cables and aerodynamic damping of cables were considered on the stability behavior of the transmission line. Superposition of the harmonic waves method was used to calculate the wind load. The corresponding wind speed to the beginning of the transmission line collapse was determined by incremental dynamic analysis. Also, the effect of the yawed wind was studied to determine the critical attack angle by the incremental dynamic method. The results show the collapse mechanisms of the transmission line and the maximum supportable wind speed, which is predicted 6m/s less than the design wind speed of the studied transmission line. Based on the numerical modeling results, a retrofitting method has been proposed to prevent failure of the tower members under design wind speed.

Determination of Structural Performance Point Utilizing The Seismic Isolation Rubber Bearing Design Method (면진격리 고무베어링 설계법을 이용한 구조물의 성능점 예측)

  • 김창훈;좌동훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.23-30
    • /
    • 2003
  • The seismic base isolation design approach has been reviewed and modified to fit the nonlinear static analysis procedure for determination of the performance point of structures in a simpler way, such an adaptation may be possible for the fact that a structural system under development of damage due to earthquake loading keeps softening to result in period shifting toward longer side. The superiority of the proposed method to the state-of-the-practice approach is that the reasonably accurate performance point can be obtained without constructing the so-called acceleration displacement response spectrum required in application of capacity spectrum method. The validity of the proposed approach was verified by comparing the predicted values to the exact ones presented in the literature.

Modeling and Analysis of SEIG-STATCOM Systems Based on the Magnitude-Phase Dynamic Method

  • Wang, Haifeng;Wu, Xinzhen;You, Rui;Li, Jia
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.944-953
    • /
    • 2018
  • This paper proposes an analysis method based on the magnitude-phase dynamic theory for isolated power systems with static synchronous compensators (STATCOMs). The stability margin of an isolated power system is greatly reduced when a load is connected, due to the disadvantageous features of the self-excited induction generators (SEIGs). To analyze the control process for system stability and to grasp the dynamic characteristics in different timescales, the relationships between the active/reactive components and the phase/magnitude of the STATCOM output voltage are derived in the natural reference frame based on the magnitude/phase dynamic theory. Then STATCOM equivalent mechanical models in both the voltage time scale and the current time scale are built. The proportional coefficients and the integral coefficients of the control process are converted into damping coefficients, inertia coefficients and stiffness coefficients so that analyzing its controls, dynamic response characteristics as well as impacts on the system operations are easier. The effectiveness of the proposed analysis method is verified by simulation and experimental results.