• Title/Summary/Keyword: equivalency

Search Result 94, Processing Time 0.02 seconds

A Study on the Failure Characteristic of Excavation Puddle by LPG Explosion using AUTODYN (LPG 폭발로 인한 건설현장 굴착웅덩이의 구조물 파손 특성에 관한 연구)

  • Kim, Eui Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.5
    • /
    • pp.58-65
    • /
    • 2022
  • Gas explosion accidents could cause a catastrophe. we need specialized and systematic accident investigation techniques to shed light on the cause and prevent similar accidents. In this study, we had performed LPG explosion simulation using AUTODYN which is the commercial explosion program and predicted the damage characteristics of the structures by LNG explosive power. In the first step, we could get LPG's physical and chemical explosion properties by calculation using TNT equivalency method. And then, by applying TNT equivalency value about the explosion limit concentration of LPG on the 2D-AUTODYN simulation, we could get the explosion pressure wave profiles (explosion pressure, explosion velocity, etc.). In the last step, we performed LPG explosion simulation by applying to the explosion pressure wave profiles as the input data on the 3D-AUTODYN simulation. As a result, we had performed analyzing of the explosion characteristics of LPG in accordance with concentration through the 3D-AUTODYN simulation in terms of the explosion pressure behavior and structure destruction and damage behavior. The analyses showed that the generated stresses of the structures were lower than the compressive strengths in cases 1(two lane) and 2(four lane), while the generated stress in case 3(six lane) was 8.68e3 kPa, which exceeded the compressive strength of 5.89e3 kPa.

Prediction of plastic strength of elliptical steel slit damper by finite element analysis

  • Hossain, Mohammad I.;Amanat, Khan M.
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.249-261
    • /
    • 2022
  • This paper presents a numerical study to develop a guideline for estimating the plastic strength of elliptical steel slit damper with reasonable accuracy. The strut width increases from middle to end in elliptical steel slit damper and it is observed from the past studies that variation of the width is not considered for calculating the plastic strength of the damper. It is also noticed that the existing formulas for predicting plastic strength of this kind of damper may not be accurate and further refinement is warranted. Study is then carried on elliptical steel slit damper made of mild steel and having different geometry to find out equivalency of it with oblong steel slit damper having similar plastic strength. A few three-dimensional finite element models of seismic moment connection system with steel slit damper are developed and validated against past experiments for carrying the present study considering both the material nonlinearity as well as geometric nonlinearity. The results of the parametric studies have been compared with energy quantities and presented graphically to better understand the effects of different parameters on the system. Based on the pattern of parametric study results, closed-form semi-empirical algebraic expression of damper plastic strength is developed for elliptical steel slit damper which shows very good agreement with finite element analysis as well as experiments. This developed expression can now be used for elliptical steel slit damper in replacement with any type of damper in the design of moment connection.

Development of a flexible composite based on vulcanized silicon casting with bismuth oxide and characterization of its radiation shielding effectiveness in diagnostic X-ray energy range and medium gamma-ray energies

  • Ibrahim Demirel;Haluk Yucel
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2570-2575
    • /
    • 2024
  • The study aims to develop a novel, lead-free, flexible and lightweight composite shielding material against ionizing radiation. For this, it was used bismuth oxide (Bi2O3) in RTV-2 silicon matrix. The shielding tests were carried out in both diagnostic X-ray energies and intermediate gamma-ray energy range of up to 662 keV to determine the radiation attenuation properties of this material in terms of attenuation ratio, half value layer, tenth value layer, mean free path and lead equivalency of samples in weight of 30%, 40%, 50% in Bi2O3. In the diagnostic X-ray energy range, half value layer, tenth value layer and lead equivalency (in mm Pb) of the produced samples were measured at 80 and 100 kVp narrow beam conditions according to the requirements of EN IEC 61331-1 standard. The results show that lead equivalent values of the produced novel sheets was measured to be 0.16 mm Pb, corresponding to a 6 mm thickness of the flexible sample when it contains 30% wt. Bi2O3 in RTV matrix. The experimental findings for durability and flexibility also indicated that this new RTV-based flexible, lead -free shielding composite can be used safely for especially for manufacturing aprons, garments and thyroid guards used in mammography, radiology, nuclear medicine and dental applications in practice.

Study on Efficient Port Environmental Management for Sustainable Port Operation (I): Case Study of Marine Environments and Natural Resources Impacts by Busan New Port Development (지속가능한 항만운영을 위한 효율적 항만환경관리에 관한 연구 (I): 부산 신항만 개발로 인한 해양환경 및 자원 영향성 평가 사례)

  • Kim, Tae-Goun
    • Journal of Navigation and Port Research
    • /
    • v.40 no.6
    • /
    • pp.401-412
    • /
    • 2016
  • The sustainable operation and development of ports is a key industry for Korea's national economy. It is increasingly more important to resolve conflicts with local communities due to port environmental problems such as air pollution, water pollution, noise and ecosystem destruction while securing port competitiveness through infrastructure expansion. In case of the Busan New Port development project in Korea, construction has been temporally suspended due to conflict with local fishermen over marine sand mining for construction. A primary reason for this is the absence and limitation of qualitative port environmental impact assessment methodologies in Korea. This includes the current investigation of fisheries damaged by ports. Therefore, the main purpose of this study is to propose economic valuation methods for assessing environmental impacts that are essential for efficient port environmental management and for sustainable port operation and development in Korea. To do this, this study examines the overall port environmental problems and their effects (damages) through the analysis of environmental policies and case studies of domestic and overseas ports. Then economic valuation methods are suggested for total economic values (TEV) of damaged environmental goods and services. Among the proposed methods, Habitat Equivalency Analysis (HEA), as a more scientific data based method, was applied to estimate marine ecosystem service damages from the designation of Busan New Port Anchorages. Finally, based on the study results, more efficient port environmental management will be achieved through the institutional adoption of the proposed economic impact assessment methods for port environmental damages.

Probabilistic Assesment of the Effects of Vapor Cloud Explosion on a Human Body (증기운 폭발이 인체에 미치는 영향에 대한 확률론적 평가)

  • Yoon, Yong-Kyun;Ju, Eun-Hye
    • Tunnel and Underground Space
    • /
    • v.31 no.1
    • /
    • pp.52-65
    • /
    • 2021
  • In this study, authors analyzed the vapor cloud explosion induced by propane leak at the PEMIX Terminal, which is the propane storage facility outside of Mexico City. TNT equivalence mass for the leaked 4750 kg propane was estimated to be 9398 kg. Blast parameters such as peak overpressure, positive phase duration, and impact at 40-400 (m) away from the center of the explosion were calculated by applying TNT Equivalency Method and Multi-Energy Method. The probability of damage due to lung damage, eardrum rupture, head impact, and whole-body displacement impact by applying the probit function obtained using blast parameters was evaluated. The peak overpressure obtained using Multi-Energy Method was found to be greater than the peak overpressure obtained by applying the TNT Equivalency Method at all distances considered, but it was evaluated that there was no significant difference from the points above 200 m. The peak overpressure obtained by Multi-Energy Method was computed to assess the extent of damage to the structure, and it was shown that structures within 100 m of the explosion center would collapse completely, and that the glasses of the structures 400 m away would be almost broken. The probability of death due to lung damage was shown to vary depending on a human body's position located in the propagating direction of shock wave, and if there is a reflecting surface in the immediate surroundings of a human body, the probability of death was estimated to be the greatest. The impact of shock wave on lung damage, eardrum rupture, head impact, and whole-body displacement impact was evaluated and found to affect whole-body impact < lung damage < eardrum rupture

A Suggestion to Establish Statistical Treatment Guideline for Aircraft Manufacturer (국산 복합재료 시험데이터 처리지침 수립을 위한 제언)

  • Suh, Jangwon
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.4
    • /
    • pp.39-43
    • /
    • 2014
  • This paper examines the statistical process that should be performed with caution in the composite material qualification and equivalency process, and describes statistically significant considerations on outlier finding and handling process, data pooling through normalization process, review for data distributions and design allowables determination process for structural analysis. Based on these considerations, the need for guidance on statistical process for aircraft manufacturers who use the composite material properties database are proposed.

The Consequence Analysis for Unconfined Vapor Cloud Explosion Accident by the Continuous Release of Gas-Liquid Flow (기-액흐름 연속누출에 의한 개방공간 증기운 폭발사고의 영향평가)

  • 장서일;이헌창;김태옥
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.3
    • /
    • pp.35-43
    • /
    • 2002
  • For the unconfined vapor cloud explosion accident by the continuous release of gas-liquid flow of various saturated liquids in a vessel at ground level, overpressures were estimated and analyzed with various release conditions and materials by TNT equivalency model with vapor dispersion. We found that at same release conditions, overpressure showed n-heptane > xylene > n-hexane > toluene > n-heptane > benzene, respectively and that overpressure was increased with increasing the hole diameter and the storage pressure, but it was increased with decreasing the wind speed, the interested distance, and the vessel thickness.

A Study on the absorbed dose to water for high energy electron beams using Water equivalency of plastic phantom (고 에너지 전자선에서 물등가 고체팬톰을 이용한 물 흡수선량 측정에 관한 연구)

  • Sin, Dong-Ho;Sin, Dong-Oh;Kim, Sung-Hoon;Park, Sung-Yong;Ji, Young-Hoon;Ahn, Hee-Kyung;Kang, Jin-Oh;Hong, Seong-Eon
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.166-169
    • /
    • 2004
  • In the International Code of Practice for dosimetry TRS-398 published by International Atomic Energy Agency(IAEA), water equivalency plastic phantom may be used under certain circumstances for electron beam dosimetry for beam quality E0${\leq}$ 10 MeV. In this study, Palstic Water$^{TM}$ and Virtual Water$^{TM}$ were evaluated in order to determine fluence scaling factor hpl. Plastic phantom was evaluated for five electron energy from 6 MeV to 20 MeV. From the measured data of Palstic Water$^{TM}$, the fluence scaling factor hpl was found to be average 0.9964 and Virtual Water$^{TM}$ fluence scaling factor was 1.0156.

  • PDF